cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060475 Triangular array formed from successive differences of factorial numbers, then with factorials removed.

This page as a plain text file.
%I A060475 #52 Aug 17 2025 21:12:20
%S A060475 1,1,0,1,1,1,1,2,3,2,1,3,7,11,9,1,4,13,32,53,44,1,5,21,71,181,309,265,
%T A060475 1,6,31,134,465,1214,2119,1854,1,7,43,227,1001,3539,9403,16687,14833,
%U A060475 1,8,57,356,1909,8544,30637,82508,148329,133496,1,9,73,527,3333,18089,81901,296967,808393,1468457,1334961
%N A060475 Triangular array formed from successive differences of factorial numbers, then with factorials removed.
%C A060475 T(n,k) is also the number of partial bijections (of an n-element set) with a fixed domain of size k and without fixed points. Equivalently, T(n,k) is the number of partial derangements with a fixed domain of size k in the symmetric inverse semigroup (monoid), I sub n. - _Abdullahi Umar_, Sep 14 2008
%H A060475 G. C. Greubel, <a href="/A060475/b060475.txt">Rows n=0..100 of triangle, flattened</a>
%H A060475 A. Laradji, and A. Umar, <a href="https://www.researchgate.net/publication/226754032_Combinatorial_Results_for_the_Symmetric_Inverse_Semigroup">Combinatorial results for the symmetric inverse semigroup</a>, Semigroup Forum 75 (2007), 221-236. - _Abdullahi Umar_, Sep 14 2008
%H A060475 L. Takacs, <a href="https://doi.org/10.1007/BF00327875">The Problem of Coincidences</a>, Archive for History of Exact Sciences, Volume 21, No. 3, Sept. 1980. pp 229-244, paragraph 10 (Catalan).
%F A060475 T(n,k) = A047920(n,k)/(n-k)! = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) = (n-k+1)*T(n, k-1) - T(n-1,k-1).
%F A060475 From _Abdullahi Umar_, Sep 14 2008: (Start)
%F A060475 T(n,k) = k! * Sum_{j=0..k} C(n-j,k-j)*(-1)^j/j!.
%F A060475 C(n,k)*T(n,k) = A144089(n, k). (End)
%F A060475 T(n,k) = A076732(n+1,k+1)/(k+1). - _Johannes W. Meijer_, Jul 27 2011
%F A060475 E.g.f. as a square array: A(x,y) = exp(-x)/(1 - x - y) = (1 + y + y^2 + y^3 + ...) + (y + 2*y^2 + 3*y^3 + 4*y^4 + ...)*x + (1 + 3*y + 7*y^2 + 13*y^3 + ...)*x^2/2! + (2 + 11*y + 32*y^2 + 71*y^3 + ...)*x^3/3! + .... Observe that (1 - y)*A(x*(1 - y),y) = exp(x*(y - 1))/(1 - x) is the e.g.f. for A008290. - _Peter Bala_, Sep 25 2013
%F A060475 T(n, k) = KummerU(-k, -n, -1). - _Peter Luschny_, Jul 07 2022
%e A060475 Triangle begins
%e A060475   1,
%e A060475   1,  0,
%e A060475   1,  1,  1,
%e A060475   1,  2,  3,  2,
%e A060475   1,  3,  7, 11,  9,
%e A060475   1,  4, 13, 32, 53, 44,
%e A060475   ...
%p A060475 A060475 := proc(n,k): k! * add(binomial(n-j,k-j)*(-1)^j/j!, j=0..k) end:
%p A060475 seq(seq(A060475(n,k), k=0..n), n=0..7); # _Johannes W. Meijer_, Jul 27 2011
%p A060475 T := (n,k) -> KummerU(-k, -n, -1):
%p A060475 seq(seq(simplify(T(n, k)), k = 0..n), n = 0..10); # _Peter Luschny_, Jul 07 2022
%t A060475 t[n_, k_] := k!*Sum[Binomial[n - j, k - j]*(-1)^j/j!, {j, 0, k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Robert G. Wilson v_, Aug 08 2011 *)
%o A060475 (PARI) {T(n,k) = k!*sum(j=0,k, (-1)^j*binomial(n-j, k-j)/j!)};
%o A060475 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Mar 04 2019
%o A060475 (Magma) [[Factorial(k)*(&+[(-1)^j*Binomial(n-j, k-j)/Factorial(j): j in [0..k]]): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Mar 04 2019
%o A060475 (Sage) [[factorial(k)*sum((-1)^j*binomial(n-j, k-j)/factorial(j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 04 2019
%Y A060475 Columns include A000012, A001477, A002061.
%Y A060475 Diagonals include A000166, A000255, A000153, A000261, A001909, A001910.
%Y A060475 Main diagonal is abs of A002119.
%Y A060475 Similar to A076731.
%Y A060475 Row sums equal A003470. - _Johannes W. Meijer_, Jul 27 2011
%Y A060475 Cf. A047920, A008290.
%K A060475 nonn,tabl
%O A060475 0,8
%A A060475 _Henry Bottomley_, Mar 16 2001