cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060506 Numerators of the asymptotic expansion of the Airy function Ai(x).

This page as a plain text file.
%I A060506 #24 Nov 26 2022 16:56:11
%S A060506 1,5,385,425425,1301375075,188699385875,2252127170418125,
%T A060506 6344885703973691875,64115070038654156396875,
%U A060506 2830616227136542350765634375,34904328696820703727291037478125,88069967543659875631905704109578125
%N A060506 Numerators of the asymptotic expansion of the Airy function Ai(x).
%C A060506 The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x) ~ (Pi^(-1/2)/2)*x^(-1/4)*exp(-z)*(Sum_{k>=0} (-1)^k*c(k)*z^(-k)), where z = (2/3)*x^(3/2). a(k) is the numerator of the fully canceled c(k).
%D A060506 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
%H A060506 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A060506 NIST's Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/9.7#ii">Airy and Related Functions (Poincaré-Type Expansions)</a> by Frank W. J. Olver.
%F A060506 a(n) = numerator((Product_{k=1..3*n-1} (2*k+1))/(216^n*n!)). [Corrected by _Sean A. Irvine_, Nov 26 2022]
%e A060506 a(2)=385 because for n=2, (Product_{k=1..3*n-1} (2*k+1))/(216^n*n!) = 385/3456 and we take the numerator of the fully canceled fraction.
%t A060506 a[ n_] := Numerator[Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n] (* _Michael Somos_, Oct 14 2011 *)
%Y A060506 Cf. A060507.
%K A060506 easy,frac,nonn
%O A060506 0,2
%A A060506 Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001