This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060506 #24 Nov 26 2022 16:56:11 %S A060506 1,5,385,425425,1301375075,188699385875,2252127170418125, %T A060506 6344885703973691875,64115070038654156396875, %U A060506 2830616227136542350765634375,34904328696820703727291037478125,88069967543659875631905704109578125 %N A060506 Numerators of the asymptotic expansion of the Airy function Ai(x). %C A060506 The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x) ~ (Pi^(-1/2)/2)*x^(-1/4)*exp(-z)*(Sum_{k>=0} (-1)^k*c(k)*z^(-k)), where z = (2/3)*x^(3/2). a(k) is the numerator of the fully canceled c(k). %D A060506 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings). %H A060506 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A060506 NIST's Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/9.7#ii">Airy and Related Functions (Poincaré-Type Expansions)</a> by Frank W. J. Olver. %F A060506 a(n) = numerator((Product_{k=1..3*n-1} (2*k+1))/(216^n*n!)). [Corrected by _Sean A. Irvine_, Nov 26 2022] %e A060506 a(2)=385 because for n=2, (Product_{k=1..3*n-1} (2*k+1))/(216^n*n!) = 385/3456 and we take the numerator of the fully canceled fraction. %t A060506 a[ n_] := Numerator[Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n] (* _Michael Somos_, Oct 14 2011 *) %Y A060506 Cf. A060507. %K A060506 easy,frac,nonn %O A060506 0,2 %A A060506 Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001