cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060507 Denominators of the asymptotic expansion of the Airy function Ai(x).

This page as a plain text file.
%I A060507 #14 May 08 2018 15:11:55
%S A060507 1,72,3456,746496,214990848,1719926784,743008370688,53496602689536,
%T A060507 10271347716390912,6655833320221310976,958439998111868780544,
%U A060507 23002559954684850733056
%N A060507 Denominators of the asymptotic expansion of the Airy function Ai(x).
%C A060507 The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x)~pi^(-1/2)/2*x^(-1/4)*exp(-z)*sum((-1)^k*c(k)*z^(-k),k=0..infinity), where z=2/3*x^(3/2). a(k) is the denominator of the fully canceled c(k).
%D A060507 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
%H A060507 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A060507 NIST's Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/9.7#ii">Airy and Related Functions (Poincaré-Type Expansions)</a> by Frank W. J. Olver.
%F A060507 a(k)=denom(product((2*l+1), l=k..3*k-1)/216^k/k!).
%e A060507 a(2) = 3456 because for k=2, product((2*l+1),l=k..3*k-1)/216^k/k! =  385/3456 and we take the denominator of the fully canceled fraction.
%t A060507 a[ n_] := If[ n<0, 0, Denominator[ Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n]] (* _Michael Somos_, Oct 14 2011 *)
%Y A060507 Cf. A060506, A014402, A014403.
%K A060507 easy,frac,nonn
%O A060507 0,2
%A A060507 Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001