This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060510 #22 Oct 23 2024 16:32:53 %S A060510 0,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1, %T A060510 0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1, %U A060510 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1 %N A060510 Alternating with hexagonal stutters: if n is hexagonal (2k^2 - k, i.e., A000384) then a(n)=a(n-1), otherwise a(n) = 1 - a(n-1). %C A060510 The row sums equal A110654 and the alternating row sums equal A130472. - _Johannes W. Meijer_, Aug 12 2015 %C A060510 This is also the array: %C A060510 0 0 0 0 0 0 0 0 0 0 0 0 0 ... %C A060510 1 1 1 1 1 1 1 1 1 1 1 1 1 ... %C A060510 0 0 0 0 0 0 0 0 0 0 0 0 0 ... %C A060510 1 1 1 1 1 1 1 1 1 1 1 1 1 ... %C A060510 0 0 0 0 0 0 0 0 0 0 0 0 0 ... %C A060510 1 1 1 1 1 1 1 1 1 1 1 1 1 ... %C A060510 0 0 0 0 0 0 0 0 0 0 0 0 0 ... %C A060510 1 1 1 1 1 1 1 1 1 1 1 1 1 ... %C A060510 0 0 0 0 0 0 0 0 0 0 0 0 0 ... %C A060510 1 1 1 1 1 1 1 1 1 1 1 1 1 ... %C A060510 0 0 0 0 0 0 0 0 0 0 0 0 0 ... %C A060510 ... %C A060510 read by antidiagonals. - _N. J. A. Sloane_, Mar 07 2023 %F A060510 a(n) = A002262(n) mod 2 = A060511(n) mod 2. %F A060510 G.f.: x/(1-x^2) - (1+x)^(-1)*Sum(n>=1, x^(n*(2*n-1))). The sum is related to Theta functions. - _Robert Israel_, Aug 12 2015 %e A060510 Hexagonal numbers start 1,6,15, ... so this sequence goes 0 0 (stutter at 1) 1 0 1 0 0 (stutter at 6) 1 0 1 0 1 0 1 0 0 (stutter at 15) 1 0, etc. %e A060510 As a triangle, sequence begins: %e A060510 0; %e A060510 0, 1; %e A060510 0, 1, 0; %e A060510 0, 1, 0, 1; %e A060510 0, 1, 0, 1, 0; %e A060510 0, 1, 0, 1, 0, 1; %e A060510 ... %p A060510 T := proc(n, k): if k mod 2 = 1 then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..13); # _Johannes W. Meijer_, Aug 12 2015 %t A060510 nxt[{n_,a_}]:={n+1,If[IntegerQ[(1+Sqrt[1+8(n+1)])/4],a,1-a]}; NestList[ nxt,{0,0},110][[All,2]] (* _Harvey P. Dale_, Jan 13 2022 *) %o A060510 (Python) %o A060510 from math import isqrt %o A060510 def A060510(n): return n+1&1^1^((m:=isqrt(n+1<<3)+1>>1)*(m-1)>>1&1) # _Chai Wah Wu_, Oct 23 2024 %Y A060510 As a simple triangular or square array virtually the only sequences which appear are A000004, A000012 and A000035. %Y A060510 Cf. A230135. %K A060510 easy,nonn,tabl %O A060510 0,1 %A A060510 _Henry Bottomley_, Mar 22 2001