cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060541 a(n) = binomial(4*n, 4).

This page as a plain text file.
%I A060541 #28 Mar 08 2022 05:06:29
%S A060541 1,70,495,1820,4845,10626,20475,35960,58905,91390,135751,194580,
%T A060541 270725,367290,487635,635376,814385,1028790,1282975,1581580,1929501,
%U A060541 2331890,2794155,3321960,3921225,4598126,5359095,6210820,7160245,8214570,9381251,10668000,12082785
%N A060541 a(n) = binomial(4*n, 4).
%H A060541 Harry J. Smith, <a href="/A060541/b060541.txt">Table of n, a(n) for n=1..1000</a>
%H A060541 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A060541 a(n) = n*(2n-1)*(4n-1)*(4n-3)/3.
%F A060541 a(n) = n * A015219(n-1) = A000332(4n) = A060539(n, 4).
%F A060541 G.f.: x*(1+65*x+155*x^2+35*x^3) / (1-x)^5. - _R. J. Mathar_, Oct 03 2011
%F A060541 From _Amiram Eldar_, Mar 08 2022: (Start)
%F A060541 Sum_{n>=1} 1/a(n) = 6*log(2) - Pi.
%F A060541 Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*log(sqrt(2)-1) - log(2) + (2*sqrt(2) - 3/2)*Pi. (End)
%t A060541 Table[Binomial[4n, 4], {n, 100}] (* _Wesley Ivan Hurt_, Sep 27 2013 *)
%t A060541 LinearRecurrence[{5,-10,10,-5,1},{1,70,495,1820,4845},40] (* _Harvey P. Dale_, Jan 13 2015 *)
%o A060541 (PARI) a(n) = n*(2*n - 1)*(4*n - 1)*(4*n - 3)/3; \\ _Harry J. Smith_, Jul 06 2009
%o A060541 (Magma) [Binomial(4 n, 4): n in [1..40]]; // _Vincenzo Librandi_, Jan 20 2015
%Y A060541 Cf. A000027, A000332, A000384, A006566, A015219, A060539.
%K A060541 nonn,easy
%O A060541 1,2
%A A060541 _Henry Bottomley_, Apr 02 2001
%E A060541 Offset changed from 0 to 1 by _Harry J. Smith_, Jul 06 2009