cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060564 Number of elliptic curves (up to isogeny) of conductor n.

This page as a plain text file.
%I A060564 #28 Feb 16 2025 08:32:44
%S A060564 0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1,1,1,0,0,1,0,2,1,0,0,1,0,1,1,1,
%T A060564 1,1,2,2,1,1,0,1,1,1,1,1,0,1,1,2,1,1,1,2,1,2,3,2,0,0,1,1,1,1,1,3,1,0,
%U A060564 1,1,0,1,1,0,3,1,3,1,1,2,0,1,1,2,1,0,0,1,2,3,2,2,0,1,0,2,0,1,4
%N A060564 Number of elliptic curves (up to isogeny) of conductor n.
%C A060564 By the modularity of elliptic curves over Q (proved by Breuil-Conrad-Diamond-Taylor), a(n) is equivalently the number of integral normalized weight 2 newforms for Gamma_0(n). - _Robin Visser_, Nov 04 2024
%H A060564 J. E. Cremona, <a href="/A060564/b060564.txt">Table of n, a(n) for n = 1..10000</a>
%H A060564 J. E. Cremona, <a href="https://johncremona.github.io/ecdata/">Elliptic Curve Data</a>
%H A060564 A. Dujella, <a href="https://web.math.pmf.unizg.hr/~duje/tors/rankhist.html">History of elliptic rank records</a>
%H A060564 LMFDB, <a href="https://www.lmfdb.org/EllipticCurve/Q/">Elliptic curves over Q</a>
%H A060564 F. Richman, <a href="http://math.fau.edu/Richman/elliptic.htm">Elliptic curves</a> [broken link]
%H A060564 A. L. Robledo, PlanetMath.org, <a href="http://planetmath.org/encyclopedia/ArithmeticOfEllipticCurves.html">The Arithmetic of Elliptic Curves</a> [broken link]
%H A060564 E. Savaş, T. A. Schmidt, and Ç. K. Koç, <a href="https://doi.org/10.1007/3-540-44709-1_13">Generating Elliptic Curves of Prime Order</a>. In: Koç, Ç.K., Naccache, D., Paar, C. (eds) Cryptographic Hardware and Embedded Systems — CHES 2001. CHES 2001. Lecture Notes in Computer Science, vol 2162. Springer, Berlin, Heidelberg.
%H A060564 J. S. Silverman, <a href="http://www.math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf">An Introduction to the Theory of Elliptic Curves</a>
%H A060564 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EllipticCurve.html">Elliptic Curve</a>
%e A060564 a(11) = 1, as there is exactly one isogeny class of elliptic curves over Q of conductor 11, represented by E : y^2 + y = x^3 - x^2. - _Robin Visser_, Nov 04 2024
%o A060564 (Sage)  # Uses Cremona's database of elliptic curves (works for all n < 500000)
%o A060564 def a(n):
%o A060564     return CremonaDatabase().number_of_isogeny_classes(n)  # _Robin Visser_, Nov 04 2024
%Y A060564 Cf. A005788, A110620, A127788.
%K A060564 nonn,nice
%O A060564 1,26
%A A060564 _N. J. A. Sloane_, Apr 12 2001