This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060579 #7 May 10 2013 12:44:44 %S A060579 1,6,19,68,242,704,1981,5140,12364,27614,57598,113108,210812,375606, %T A060579 643646,1066196,1714445,2685464,4109493,6158768,9058119,13097592, %U A060579 18647371,26175300,36267330,49651242,67224024,90083308,119563302 %N A060579 Number of homeomorphically irreducible general graphs on 4 labeled nodes and with n edges. %C A060579 A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2. %D A060579 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983. %H A060579 V. Jovovic, <a href="/A060576/a060576.pdf">Generating functions for homeomorphically irreducible general graphs on n labeled nodes</a> %H A060579 V. Jovovic, <a href="/A060576/a060576_rec.pdf">Recurrences for the numbers of homeomorphically irreducible general graphs on m labeled nodes and n edges</a> %F A060579 G.f.: (4*x^15 + 5*x^14 - 194*x^13 + 881*x^12 - 2058*x^11 + 3096*x^10 - 3330*x^9 + 2628*x^8 - 1398*x^7 + 359*x^6 + 72*x^5 - 93*x^4 + 28*x^3 + 4*x^2 - 4*x + 1)/(x - 1)^10. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!. %Y A060579 Cf. A003514, A060516, A060533-A060537, A060576-A060581. %K A060579 easy,nonn %O A060579 0,2 %A A060579 _Vladeta Jovovic_, Apr 03 2001