This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060603 #17 Jul 02 2025 16:02:01 %S A060603 0,1,27,640,15625,408240,11529602,352321536,11622614670,412500000000, %T A060603 15692141883605,637501182050304,27561634699895023,1263990776407224320, %U A060603 61305144653320312500,3135946492530623774720,168757013424812699892108 %N A060603 Number of ways of expressing an n-cycle in the symmetric group S_n as a product of n+1 transpositions. %C A060603 For n >= 3, a(n) = A060348(n)*n. The number of ways of expressing an n-cycle in the symmetric group S_n as a product of n-1 transpositions was given in the comment to A000272. %H A060603 Harry J. Smith, <a href="/A060603/b060603.txt">Table of n, a(n) for n = 1..200</a> %H A060603 D. M. Jackson, <a href="http://dx.doi.org/10.1016/0097-3165(88)90062-3">Some Combinatorial Problems Associated with Products of Conjugacy Classes of the Symmetric Group</a>, Journal of Combinatorial Theory, Series A, 49 363-369(1988). %F A060603 a(n) = (1/24) * (n^2 - 1) * n^(n + 1). %e A060603 a(2) = 1 because in S_2 the only way to write (12) as a product of 3 transpositions is (12) = (12)(12)(12). %p A060603 for n from 1 to 30 do printf(`%d,`,1/24 * (n^2 - 1) * n^(n + 1)) od: %o A060603 (PARI) a(n)={(n^2 - 1) * n^(n + 1)/24} \\ _Harry J. Smith_, Jul 07 2009 %Y A060603 Cf. A060348, A000272. %K A060603 nonn %O A060603 1,3 %A A060603 Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001 %E A060603 More terms from _James Sellers_, Apr 13 2001