This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060695 #18 Mar 22 2020 23:45:41 %S A060695 1,2,3,4,5,6,7,8,9,10,11,12,13,14,30,16,17,18,19,20,21,22,23,24,25,26, %T A060695 27,28,29,60,31,32,33,34,70,36,37,38,39,40,41,42,43,44,90,46,47,48,49, %U A060695 50,51,52,53,54,55,56,57,58,59,60,61,62,126,64,65,66,67,68,69,140,71 %N A060695 a(n) = gcd(2n, A060766(2n)). %F A060695 a(n) = a(2k) is either n = 2k or n/2 = k. a(n) = n/2 seems regular, a(n) = n seems "anomalous". %e A060695 n = 30: D = {1, 2, 3, 5, 6, 10, 15, 30}, dD = {1, 1, 2, 1, 4, 5, 15}={1, 2, 4, 5, 15}, lcm(dD) = 60, gcd(n, lcm(dD(n))) = gcd(30, 60) = 30 = n %e A060695 n = 36: D = {1, 2, 3, 4, 6, 9, 12, 18, 36}, dD = {1, 1, 1, 2, 3, 3, 6, 18} = {1, 2, 3, 6, 18}, lcm(dD) = 18, gcd(n, lcm(dD(n))) = gcd(36, 18) = 18 = n/2. %t A060695 Table[GCD[2 n, LCM @@ Differences@ Divisors[2 n]], {n, 71}] (* _Michael De Vlieger_, Dec 20 2015 *) %o A060695 (PARI) a(n) = my(d=divisors(2*n), dd = vector(#d-1, k, d[k+1] - d[k])); gcd(2*n, lcm(dd)); \\ _Michel Marcus_, Mar 22 2020 %Y A060695 Cf. A000005, A060680-A060685, A060741, A060742, A060763-A060766. %K A060695 nonn %O A060695 1,2 %A A060695 _Labos Elemer_, Apr 25 2001