cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060704 Singular n X n matrices over GF(2).

This page as a plain text file.
%I A060704 #18 Jul 02 2025 16:02:01
%S A060704 1,10,344,45376,23555072,48560766976,399099960492032,
%T A060704 13098680304497852416,1718239329196060706865152,
%U A060704 901210462928281273073900978176,1890350559451566075272982533664407552
%N A060704 Singular n X n matrices over GF(2).
%C A060704 Also (apparently) number of n X n matrices over GF(2) having permanent = 0. - _Hugo Pfoertner_, Nov 14 2003
%H A060704 Harry J. Smith, <a href="/A060704/b060704.txt">Table of n, a(n) for n = 1..57</a>
%H A060704 <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a>
%F A060704 For n >= 1 a(n) = 2^(n^2) - A002884(n) = A002416(n) - A002884(n) = 2^(n^2) - Product_{i=0..n-1} (2^n - 2^i).
%p A060704 for n from 1 to 20 do printf(`%d,`,2^(n^2) - product(2^n - 2^j, j=0..n-1)) od:
%o A060704 (PARI) a(n)={2^(n^2) - prod(i=0, n-1, 2^n - 2^i)} \\ _Harry J. Smith_, Jul 09 2009
%Y A060704 Cf. A002884, A002416.
%K A060704 nonn
%O A060704 1,2
%A A060704 Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001
%E A060704 More terms from _James Sellers_, Apr 23 2001