cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060710 Number of subgroups of dihedral group with 2n elements, counting conjugate subgroups only once, i.e., conjugacy classes of subgroups of the dihedral group.

This page as a plain text file.
%I A060710 #45 Jan 21 2023 03:19:43
%S A060710 2,5,4,8,4,10,4,11,6,10,4,16,4,10,8,14,4,15,4,16,8,10,4,22,6,10,8,16,
%T A060710 4,20,4,17,8,10,8,24,4,10,8,22,4,20,4,16,12,10,4,28,6,15,8,16,4,20,8,
%U A060710 22,8,10,4,32,4,10,12,20,8,20,4,16,8,20,4,33,4,10,12,16,8,20,4,28,10,10,4
%N A060710 Number of subgroups of dihedral group with 2n elements, counting conjugate subgroups only once, i.e., conjugacy classes of subgroups of the dihedral group.
%C A060710 The total number of subgroups, counting conjugate subgroups as distinct, is A007503.
%C A060710 Also the number of subgroups of the group C_n x C_2 (where C_n is the cyclic group with n elements).
%H A060710 Harry J. Smith, <a href="/A060710/b060710.txt">Table of n, a(n) for n = 1..1000</a>
%F A060710 For even n, a(n) = 2*tau(n) + tau(n/2).
%F A060710 For odd n, a(n) = tau(2n) = 2*tau(n) = 2*A000005(n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001
%F A060710 From _Michael Somos_, Sep 20 2005: (Start)
%F A060710 Moebius transform is period 2 sequence [2, 3, ...].
%F A060710 G.f.: Sum_{k>0} x^k*(2+3x^k)/(1-x^(2k)) = Sum_{k>0} 2*x^(2k-1)/(1-x^(2k-1)) + 3*x^(2k)/(1-x^(2k)). (End)
%F A060710 a(n) = 4*tau(n) - tau(2n). - _Ridouane Oudra_, Jan 16 2023
%F A060710 Sum_{k=1..n} a(k) ~ n*(5*log(n) + 10*gamma - log(2) - 5)/2, where gamma is Euler's constant (A001622). - _Amiram Eldar_, Jan 21 2023
%e A060710 The dihedral group D6 is isomorphic to the symmetric group S_3 and the conjugacy classes of subgroups are: the trivial group, the whole group, subgroup of order 2 generated by a transposition and the subgroup A_3 generated by the 3-cycles. So a(3) = 4.
%t A060710 a[n_] := DivisorSum[n, 3-Mod[#,2]&];
%t A060710 Array[a, 100] (* _Jean-François Alcover_, Jun 03 2019 *)
%o A060710 (PARI) a(n)=if(n<1, 0, sumdiv(n,d, 3-d%2)) /* _Michael Somos_, Sep 20 2005 */
%o A060710 (PARI) { for (n=1, 1000, write("b060710.txt", n, " ", sumdiv(n, d, 3 - d%2)); ) } \\ _Harry J. Smith_, Jul 10 2009
%o A060710 (Sage)
%o A060710 def A060710(n): return add(3 - int(is_odd(d)) for d in divisors(n))
%o A060710 [A060710(n) for n in (1..83)] # _Peter Luschny_, Sep 12 2012
%Y A060710 Cf. A001622, A007503, A062011.
%Y A060710 A row of A216624.
%K A060710 nonn
%O A060710 1,1
%A A060710 Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
%E A060710 More terms from _Vladeta Jovovic_, Jul 15 2001