This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060710 #45 Jan 21 2023 03:19:43 %S A060710 2,5,4,8,4,10,4,11,6,10,4,16,4,10,8,14,4,15,4,16,8,10,4,22,6,10,8,16, %T A060710 4,20,4,17,8,10,8,24,4,10,8,22,4,20,4,16,12,10,4,28,6,15,8,16,4,20,8, %U A060710 22,8,10,4,32,4,10,12,20,8,20,4,16,8,20,4,33,4,10,12,16,8,20,4,28,10,10,4 %N A060710 Number of subgroups of dihedral group with 2n elements, counting conjugate subgroups only once, i.e., conjugacy classes of subgroups of the dihedral group. %C A060710 The total number of subgroups, counting conjugate subgroups as distinct, is A007503. %C A060710 Also the number of subgroups of the group C_n x C_2 (where C_n is the cyclic group with n elements). %H A060710 Harry J. Smith, <a href="/A060710/b060710.txt">Table of n, a(n) for n = 1..1000</a> %F A060710 For even n, a(n) = 2*tau(n) + tau(n/2). %F A060710 For odd n, a(n) = tau(2n) = 2*tau(n) = 2*A000005(n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001 %F A060710 From _Michael Somos_, Sep 20 2005: (Start) %F A060710 Moebius transform is period 2 sequence [2, 3, ...]. %F A060710 G.f.: Sum_{k>0} x^k*(2+3x^k)/(1-x^(2k)) = Sum_{k>0} 2*x^(2k-1)/(1-x^(2k-1)) + 3*x^(2k)/(1-x^(2k)). (End) %F A060710 a(n) = 4*tau(n) - tau(2n). - _Ridouane Oudra_, Jan 16 2023 %F A060710 Sum_{k=1..n} a(k) ~ n*(5*log(n) + 10*gamma - log(2) - 5)/2, where gamma is Euler's constant (A001622). - _Amiram Eldar_, Jan 21 2023 %e A060710 The dihedral group D6 is isomorphic to the symmetric group S_3 and the conjugacy classes of subgroups are: the trivial group, the whole group, subgroup of order 2 generated by a transposition and the subgroup A_3 generated by the 3-cycles. So a(3) = 4. %t A060710 a[n_] := DivisorSum[n, 3-Mod[#,2]&]; %t A060710 Array[a, 100] (* _Jean-François Alcover_, Jun 03 2019 *) %o A060710 (PARI) a(n)=if(n<1, 0, sumdiv(n,d, 3-d%2)) /* _Michael Somos_, Sep 20 2005 */ %o A060710 (PARI) { for (n=1, 1000, write("b060710.txt", n, " ", sumdiv(n, d, 3 - d%2)); ) } \\ _Harry J. Smith_, Jul 10 2009 %o A060710 (Sage) %o A060710 def A060710(n): return add(3 - int(is_odd(d)) for d in divisors(n)) %o A060710 [A060710(n) for n in (1..83)] # _Peter Luschny_, Sep 12 2012 %Y A060710 Cf. A001622, A007503, A062011. %Y A060710 A row of A216624. %K A060710 nonn %O A060710 1,1 %A A060710 Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001 %E A060710 More terms from _Vladeta Jovovic_, Jul 15 2001