A060736 Array of square numbers read by antidiagonals in up direction.
1, 2, 4, 5, 3, 9, 10, 6, 8, 16, 17, 11, 7, 15, 25, 26, 18, 12, 14, 24, 36, 37, 27, 19, 13, 23, 35, 49, 50, 38, 28, 20, 22, 34, 48, 64, 65, 51, 39, 29, 21, 33, 47, 63, 81, 82, 66, 52, 40, 30, 32, 46, 62, 80, 100
Offset: 1
Examples
1 4 9 16 .. => a(1)= 1 2 3 8 15 .. => a(2)= 2, a(3)=4 5 6 7 14 .. => a(4)= 5, a(5)=3, a(6)=9 10 11 12 13 .. => a(7)=10, a(8)=6, a(9)=8, a(10)=16
Links
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
Table[ If[n < 2*k-1, k^2 + k - n, (n-k)^2 + k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2013 *)
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n if i>=j: result=i**2-j+1 else: result=(j-1)**2+i # Boris Putievskiy, Jan 09 2013
Formula
T(n+1, k)=n*n+k, T(k, n+1)=(n+1)*(n+1)+1-k, 1 <= k <= n+1.
a(n)=i^2-j+1 if i >= j, a(n)=(j-1)^2 + i if i < j, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jan 09 2013
Comments