cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060742 Number of divisors of n! which are also differences between consecutive divisors of n! (ordered by size).

This page as a plain text file.
%I A060742 #20 Jun 15 2024 05:49:43
%S A060742 0,0,1,2,4,9,15,27,41,68,111,218,328,624,929,1518,2016,3689,4965,9252,
%T A060742 13177,20016,30697,56749,69434,94242,149558,190292,258370,492924,
%U A060742 615063,1149403,1325124,1841343,2737190,3592273,4193855,8216492,12668800,17654339,20368544
%N A060742 Number of divisors of n! which are also differences between consecutive divisors of n! (ordered by size).
%H A060742 Daniel Berend and J. E. Harmse, <a href="http://dx.doi.org/10.5802/aif.1348">Gaps between consecutive divisors of factorials</a>, Ann. Inst. Fourier, 43 (3) (1993), 569-583.
%F A060742 a(n) = A060741(n!/2) for n >= 2. - _Amiram Eldar_, Jun 15 2024
%e A060742 For n = 5, n! = 120; divisors = {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}; differences = {1,1,1,1,1,2,2,2,3,5,4,6,10,20,60}; intersection = {1,2,3,4,5,6,10,20,60}, so a(5) = 9.
%p A060742 f:= proc(n) local D,L;
%p A060742   D:= numtheory:-divisors(n!);
%p A060742   L:= sort(convert(D,list));
%p A060742   nops(convert(L[2..-1]-L[1..-2],set) intersect D);
%p A060742 end proc:
%p A060742 map(f, [$0..34]); # _Robert Israel_, Jul 03 2017
%t A060742 a[n_ ] := Length[Intersection[Drop[d=Divisors[n! ], 1]-Drop[d, -1], d]]
%o A060742 (PARI) a(n) = {my(v = List(), f = n!, d1 = 1, del); fordiv(f, d, if(d > 1, del = d - d1; if(!(f % del), listput(v, del)); d1 = d)); #Set(v);} \\ _Amiram Eldar_, Jun 15 2024
%Y A060742 Cf. A000142, A027423, A060737, A060738, A060741.
%K A060742 nonn
%O A060742 0,4
%A A060742 _Labos Elemer_, Apr 23 2001
%E A060742 Edited by _Dean Hickerson_, Jan 22 2002
%E A060742 One more term from _Robert G. Wilson v_, Jan 29 2002
%E A060742 a(33)-a(35) from _Robert Israel_, Jul 03 2017
%E A060742 a(36)-a(40) from _Amiram Eldar_, Jun 15 2024