cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060762 Number of conjugacy classes (the same as the number of irreducible representations) in the dihedral group with 2n elements.

This page as a plain text file.
%I A060762 #25 Jan 01 2025 00:15:50
%S A060762 2,4,3,5,4,6,5,7,6,8,7,9,8,10,9,11,10,12,11,13,12,14,13,15,14,16,15,
%T A060762 17,16,18,17,19,18,20,19,21,20,22,21,23,22,24,23,25,24,26,25,27,26,28,
%U A060762 27,29,28,30,29,31,30,32,31,33,32,34,33,35,34,36,35,37,36,38,37,39,38,40
%N A060762 Number of conjugacy classes (the same as the number of irreducible representations) in the dihedral group with 2n elements.
%D A060762 Jean-Pierre Serre, Linear Representations of Finite Groups, Springer-Verlag Graduate Texts in Mathematics 42.
%H A060762 Harry J. Smith, <a href="/A060762/b060762.txt">Table of n, a(n) for n=1,...,1000</a>
%H A060762 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1).
%F A060762 For odd n: a(n) = (n+3)/2; for even n: a(n) = (n+6)/2.
%F A060762 a(1)=2,a(2)=4. For odd n:a(n)=(a(n-1)+a(n-2))/2; for even n: a(n)=(a(n-1)+a(n-2)+3)/2. - _Vincenzo Librandi_, Dec 20 2010
%F A060762 From _Colin Barker_, Apr 19 2012: (Start)
%F A060762 a(n) = a(n-1) + a(n-2) - a(n-3).
%F A060762 G.f.: x*(2 + 2*x - 3*x^2)/((1 - x)^2*(1 + x)). (End)
%t A060762 a[1] = 2; a[2] = 4; a[n_] := a[n] = (a[n - 1] + a[n - 2] + If[ OddQ@ n, 0, 3])/2; Array[a, 74]
%t A060762 LinearRecurrence[{1, 1, -1}, {2, 4, 3}, 74] (* _Robert G. Wilson v_, Apr 19 2012 *)
%o A060762 (Magma) [ IsOdd(n) select (n+3)/2 else n/2+3 : n in [1..10] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
%o A060762 (PARI) a(n) = { if (n%2, (n + 3)/2, (n + 6)/2) } \\ _Harry J. Smith_, Jul 11 2009
%K A060762 nonn,easy
%O A060762 1,1
%A A060762 Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 23 2001
%E A060762 More terms from _Jonathan Vos Post_, May 27 2007