cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060778 a(n) = gcd(tau(n+1), tau(n)), where tau = A000005.

This page as a plain text file.
%I A060778 #19 Dec 11 2024 23:41:24
%S A060778 1,2,1,1,2,2,2,1,1,2,2,2,2,4,1,1,2,2,2,2,4,2,2,1,1,4,2,2,2,2,2,2,4,4,
%T A060778 1,1,2,4,4,2,2,2,2,6,2,2,2,1,3,2,2,2,2,4,4,4,4,2,2,2,2,2,1,1,4,2,2,2,
%U A060778 4,2,2,2,2,2,6,2,4,2,2,5,1,2,2,4,4,4,4,2,2,4,2,2,4,4,4,2,2,6,3,1,2,2,2,8,4
%N A060778 a(n) = gcd(tau(n+1), tau(n)), where tau = A000005.
%H A060778 Harry J. Smith, <a href="/A060778/b060778.txt">Table of n, a(n) for n=1..1000</a>
%F A060778 a(n) = gcd(A000005(n+1), A000005(n)).
%t A060778 GCD@@@Partition[DivisorSigma[0,Range[110]],2,1] (* _Harvey P. Dale_, May 27 2014 *)
%o A060778 (PARI) a(n) = gcd(numdiv(n), numdiv(n+1)); \\ _Michel Marcus_, Jan 12 2018
%o A060778 (Python)
%o A060778 from math import gcd
%o A060778 from sympy import divisor_count
%o A060778 def A060778(n): return gcd(divisor_count(n+1),divisor_count(n)) # _Chai Wah Wu_, Aug 12 2023
%Y A060778 Cf. A000005, A057921, A058074.
%K A060778 nonn
%O A060778 1,2
%A A060778 _Labos Elemer_, Apr 26 2001