This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060804 #24 Apr 25 2025 17:46:30 %S A060804 2,2,2,9,3,10,1,4,18,1,3,5,3,1,3,3,1,1,5,3,8,1,2,1,62,1,1,1,3,2,2,1,1, %T A060804 5,3,1,8,2,2,34,7,1,1,5,1,2,3,3,14,9,214,11,8,23,1,8,2,10,2,2,2,1,1,6, %U A060804 1,8,2,1,9,2,1,11,1,3,3,4,1,28,6,1,28,1,15,1,1,1,2 %N A060804 Continued fraction for 2*zeta(3). %H A060804 Harry J. Smith, <a href="/A060804/b060804.txt">Table of n, a(n) for n = 0..19999</a> %H A060804 Y. V. Nesterenko, <a href="https://web.archive.org/web/20020608061629/http://www.ufr-mi.u-bordeaux.fr:80/~brisebar/GT/9899/Nest/nest29avril.html">Zeta(3) and recurrence relations.</a> %H A060804 Y. V. Nesterenko, <a href="https://doi.org/10.4213/mzm1785">A few remarks on zeta(3)</a>, Mathematical Notes, 59 (No. 6, 1996), 625-636. %e A060804 2.404113806319188570799476323... = 2 + 1/(2 + 1/(2 + 1/(9 + 1/(3 + ...)))). - _Harry J. Smith_, Jul 12 2009 %p A060804 Digits := 100: t1 := evalf(2*Zeta(3)); convert(t1,confrac); %t A060804 ContinuedFraction[2 Zeta[3],90] (* _Harvey P. Dale_, Apr 25 2025 *) %o A060804 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*zeta(3)); for (n=1, 20000, write("b060804.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Jul 12 2009 %Y A060804 Cf. A060805, A060806, A060807, A060808 (convergents). %Y A060804 Cf. A152648 (decimal expansion). %K A060804 nonn,cofr %O A060804 0,1 %A A060804 _N. J. A. Sloane_, Apr 29 2001 %E A060804 Offset changed by _Andrew Howroyd_, Jul 10 2024