cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060806 Denominators of special continued fraction for 2*zeta(3).

This page as a plain text file.
%I A060806 #7 Jan 02 2023 00:06:50
%S A060806 2,4,3,2,4,6,5,4,6,8,7,6,8,10,9,8,10,12,11,10,12,14,13,12,14,16,15,14,
%T A060806 16,18,17,16,18,20,19,18,20,22,21,20,22,24,23,22,24,26,25,24,26,28,27,
%U A060806 26,28,30,29,28,30,32,31,30,32,34,33,32,34,36,35,34,36
%N A060806 Denominators of special continued fraction for 2*zeta(3).
%D A060806 Y. V. Nesterenko, A few remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.
%H A060806 Y. V. Nesterenko, <a href="http://www.ufr-mi.u-bordeaux.fr/~brisebar/GT/9899/Nest/nest29avril.html">Zeta(3) and recurrence relations.</a>
%H A060806 Yu. V. Nesterenko, <a href="http://dx.doi.org/10.1007/BF02307212">A few remarks on zeta(3)</a>, Math. Notes 59 (1996) 625-636.
%F A060806 a(4*k+1) = 2*k+2, a(4*k+2) = 2*k+4, a(4*k+3) = 2*k+3, a(4*k+4) = 2*k+2 [from Nesterenko]. - _Sean A. Irvine_, Jan 01 2023
%Y A060806 Cf. A060804-A060808.
%K A060806 nonn,cofr
%O A060806 1,1
%A A060806 _N. J. A. Sloane_, Apr 29 2001
%E A060806 More terms from _Sean A. Irvine_, Jan 01 2023