cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060807 Numerators of ordinary continued fraction convergents for 2*zeta(3).

This page as a plain text file.
%I A060807 #11 Jul 10 2024 14:55:48
%S A060807 2,5,12,113,351,3623,3974,19519,355316,374835,1479821,7773940,
%T A060807 24801641,32575581,122528384,400160733,522689117,922849850,5136938367,
%U A060807 16333664951,135806257975,152139922926,440086103827,592226026753
%N A060807 Numerators of ordinary continued fraction convergents for 2*zeta(3).
%D A060807 Y. V. Nesterenko, Some remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.
%H A060807 Y. Nesterenko, <a href="http://www.ufr-mi.u-bordeaux.fr/~brisebar/GT/9899/Nest/nest29avril.html">Zeta(3) and recurrence relations.</a>
%e A060807 2, 5/2, 12/5, 113/47, 351/146, 3623/1507, 3974/1653, ...
%p A060807 Digits := 100: t1 := evalf(2*Zeta(3)); cfrac(t1,l1,l2); l1;
%Y A060807 Cf. A060804, A060805, A060806, A060808 (denominators).
%K A060807 nonn,easy,cofr,frac
%O A060807 0,1
%A A060807 _N. J. A. Sloane_, Apr 29 2001
%E A060807 More terms from _Vladeta Jovovic_, Apr 29 2001
%E A060807 Offset changed by _Andrew Howroyd_, Jul 10 2024