This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060821 #80 Dec 30 2024 11:24:39 %S A060821 1,0,2,-2,0,4,0,-12,0,8,12,0,-48,0,16,0,120,0,-160,0,32,-120,0,720,0, %T A060821 -480,0,64,0,-1680,0,3360,0,-1344,0,128,1680,0,-13440,0,13440,0,-3584, %U A060821 0,256,0,30240,0,-80640,0,48384,0,-9216,0,512,-30240,0,302400,0,-403200,0,161280,0,-23040,0,1024 %N A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n. %C A060821 Exponential Riordan array [exp(-x^2), 2x]. - _Paul Barry_, Jan 22 2009 %D A060821 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219. %H A060821 T. D. Noe, <a href="/A060821/b060821.txt">Rows n=0..100 of triangle, flattened</a> %H A060821 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 801. %H A060821 Taekyun Kim and Dae San Kim, <a href="http://arxiv.org/abs/1602.04096">A note on Hermite polynomials</a>, arXiv:1602.04096 [math.NT], 2016. %H A060821 Alexander Minakov, <a href="https://arxiv.org/abs/1911.03942">Question about integral of product of four Hermite polynomials integrated with squared weight</a>, arXiv:1911.03942 [math.CO], 2019. %H A060821 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>. %H A060821 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>. %F A060821 T(n, k) = ((-1)^((n-k)/2))*(2^k)*n!/(k!*((n-k)/2)!) if n-k is even and >= 0, else 0. %F A060821 E.g.f.: exp(-y^2 + 2*y*x). %F A060821 From _Paul Barry_, Aug 28 2005: (Start) %F A060821 T(n, k) = n!/(k!*2^((n-k)/2)((n-k)/2)!)2^((n+k)/2)cos(Pi*(n-k)/2)(1 + (-1)^(n+k))/2; %F A060821 T(n, k) = A001498((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)2^((n+k)/2)(1 + (-1)^(n+k))/2. %F A060821 (End) %F A060821 Row sums: A062267. - _Derek Orr_, Mar 12 2015 %F A060821 a(n*(n+3)/2) = a(A000096(n)) = 2^n. - _Derek Orr_, Mar 12 2015 %F A060821 Recurrence for fixed n: T(n, k) = -(k+2)*(k+1)/(2*(n-k)) * T(n, k+2), starting with T(n, n) = 2^n. - _Ralf Stephan_, Mar 26 2016 %F A060821 The m-th row consecutive nonzero entries in increasing order are (-1)^(c/2)*(c+b)!/(c/2)!b!*2^b with c = m, m-2, ..., 0 and b = m-c if m is even and with c = m-1, m-3, ..., 0 with b = m-c if m is odd. For the 10th row starting at a(55) the 6 consecutive nonzero entries in order are -30240,302400,-403200,161280,-23040,1024 given by c = 10,8,6,4,2,0 and b = 0,2,4,6,8,10. - _Richard Turk_, Aug 20 2017 %e A060821 [1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... . %e A060821 Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ... %e A060821 Triangle starts: %e A060821 1; %e A060821 0, 2; %e A060821 -2, 0, 4; %e A060821 0, -12, 0, 8; %e A060821 12, 0, -48, 0, 16; %e A060821 0, 120, 0, -160, 0, 32; %e A060821 -120, 0, 720, 0, -480, 0, 64; %e A060821 0, -1680, 0, 3360, 0, -1344, 0, 128; %e A060821 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256; %e A060821 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512; %e A060821 -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024; %p A060821 with(orthopoly):for n from 0 to 10 do H(n,x):od; %p A060821 T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end; %p A060821 # Alternative: %p A060821 T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else %p A060821 (T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end: %p A060821 seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # _Peter Luschny_, Jan 08 2023 %t A060821 Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* _Jean-François Alcover_, Jan 18 2012 *) %o A060821 (PARI) for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ _Charles R Greathouse IV_, Jun 20 2012 %o A060821 (Python) %o A060821 from sympy import hermite, Poly, symbols %o A060821 x = symbols('x') %o A060821 def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1] %o A060821 for n in range(21): print(a(n)) # _Indranil Ghosh_, May 26 2017 %o A060821 (Python) %o A060821 def Trow(n: int) -> list[int]: %o A060821 row: list[int] = [0] * (n + 1); row[n] = 2**n %o A060821 for k in range(n - 2, -1, -2): %o A060821 row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k)) %o A060821 return row # _Peter Luschny_, Jan 08 2023 %Y A060821 Cf. A001814, A001816, A000321, A062267 (row sums). %Y A060821 Without initial zeros, same as A059343. %K A060821 sign,tabl,nice %O A060821 0,3 %A A060821 _Vladeta Jovovic_, Apr 30 2001