cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.

This page as a plain text file.
%I A060821 #80 Dec 30 2024 11:24:39
%S A060821 1,0,2,-2,0,4,0,-12,0,8,12,0,-48,0,16,0,120,0,-160,0,32,-120,0,720,0,
%T A060821 -480,0,64,0,-1680,0,3360,0,-1344,0,128,1680,0,-13440,0,13440,0,-3584,
%U A060821 0,256,0,30240,0,-80640,0,48384,0,-9216,0,512,-30240,0,302400,0,-403200,0,161280,0,-23040,0,1024
%N A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.
%C A060821 Exponential Riordan array [exp(-x^2), 2x]. - _Paul Barry_, Jan 22 2009
%D A060821 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.
%H A060821 T. D. Noe, <a href="/A060821/b060821.txt">Rows n=0..100 of triangle, flattened</a>
%H A060821 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 801.
%H A060821 Taekyun Kim and Dae San Kim, <a href="http://arxiv.org/abs/1602.04096">A note on Hermite polynomials</a>, arXiv:1602.04096 [math.NT], 2016.
%H A060821 Alexander Minakov, <a href="https://arxiv.org/abs/1911.03942">Question about integral of product of four Hermite polynomials integrated with squared weight</a>, arXiv:1911.03942 [math.CO], 2019.
%H A060821 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>.
%H A060821 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>.
%F A060821 T(n, k) = ((-1)^((n-k)/2))*(2^k)*n!/(k!*((n-k)/2)!) if n-k is even and >= 0, else 0.
%F A060821 E.g.f.: exp(-y^2 + 2*y*x).
%F A060821 From _Paul Barry_, Aug 28 2005: (Start)
%F A060821 T(n, k) = n!/(k!*2^((n-k)/2)((n-k)/2)!)2^((n+k)/2)cos(Pi*(n-k)/2)(1 + (-1)^(n+k))/2;
%F A060821 T(n, k) = A001498((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)2^((n+k)/2)(1 + (-1)^(n+k))/2.
%F A060821 (End)
%F A060821 Row sums: A062267. - _Derek Orr_, Mar 12 2015
%F A060821 a(n*(n+3)/2) = a(A000096(n)) = 2^n. - _Derek Orr_, Mar 12 2015
%F A060821 Recurrence for fixed n: T(n, k) = -(k+2)*(k+1)/(2*(n-k)) * T(n, k+2), starting with T(n, n) = 2^n. - _Ralf Stephan_, Mar 26 2016
%F A060821 The m-th row consecutive nonzero entries in increasing order are (-1)^(c/2)*(c+b)!/(c/2)!b!*2^b with c = m, m-2, ..., 0 and b = m-c if m is even and with c = m-1, m-3, ..., 0 with b = m-c if m is odd. For the 10th row starting at a(55) the 6 consecutive nonzero entries in order are -30240,302400,-403200,161280,-23040,1024 given by c = 10,8,6,4,2,0 and b = 0,2,4,6,8,10. - _Richard Turk_, Aug 20 2017
%e A060821 [1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
%e A060821 Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
%e A060821 Triangle starts:
%e A060821      1;
%e A060821      0,     2;
%e A060821     -2,     0,      4;
%e A060821      0,   -12,      0,      8;
%e A060821     12,     0,    -48,      0,      16;
%e A060821      0,   120,      0,   -160,       0,    32;
%e A060821   -120,     0,    720,      0,    -480,     0,     64;
%e A060821      0, -1680,      0,   3360,       0, -1344,      0,   128;
%e A060821   1680,     0, -13440,      0,   13440,     0,  -3584,     0,    256;
%e A060821      0, 30240,      0, -80640,       0, 48384,      0, -9216,      0, 512;
%e A060821 -30240,     0, 302400,      0, -403200,     0, 161280,     0, -23040,   0, 1024;
%p A060821 with(orthopoly):for n from 0 to 10 do H(n,x):od;
%p A060821 T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
%p A060821 # Alternative:
%p A060821 T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
%p A060821 (T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
%p A060821 seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # _Peter Luschny_, Jan 08 2023
%t A060821 Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* _Jean-François Alcover_, Jan 18 2012 *)
%o A060821 (PARI) for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ _Charles R Greathouse IV_, Jun 20 2012
%o A060821 (Python)
%o A060821 from sympy import hermite, Poly, symbols
%o A060821 x = symbols('x')
%o A060821 def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
%o A060821 for n in range(21): print(a(n)) # _Indranil Ghosh_, May 26 2017
%o A060821 (Python)
%o A060821 def Trow(n: int) -> list[int]:
%o A060821     row: list[int] = [0] * (n + 1); row[n] = 2**n
%o A060821     for k in range(n - 2, -1, -2):
%o A060821         row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
%o A060821     return row  # _Peter Luschny_, Jan 08 2023
%Y A060821 Cf. A001814, A001816, A000321, A062267 (row sums).
%Y A060821 Without initial zeros, same as A059343.
%K A060821 sign,tabl,nice
%O A060821 0,3
%A A060821 _Vladeta Jovovic_, Apr 30 2001