This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060832 #27 Jan 25 2025 12:51:15 %S A060832 0,1,3,4,6,7,10,11,13,14,16,17,20,21,23,24,26,27,30,31,33,34,36,37,41, %T A060832 42,44,45,47,48,51,52,54,55,57,58,61,62,64,65,67,68,71,72,74,75,77,78, %U A060832 82,83,85,86,88,89,92,93,95,96,98,99,102,103,105,106,108,109,112,113 %N A060832 a(n) = Sum_{k>0} floor(n/k!). %H A060832 Harry J. Smith, <a href="/A060832/b060832.txt">Table of n, a(n) for n = 0..1000</a> %F A060832 a(n) = a(n-1) + A055881(n). %F A060832 a(n) = (e-1)*n + f(n) where f(n) < 0. - _Benoit Cloitre_, Jun 19 2002 %F A060832 f is unbounded in the negative direction. The assertion that f(n) < 0 is correct, since (e-1)*n = Sum_{k>=1} n/k! is term for term >= this sequence. - _Franklin T. Adams-Watters_, Nov 03 2005 %F A060832 G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k!)/(1 - x^(k!)). - _Ilya Gutkovskiy_, Jul 11 2019 %o A060832 (PARI) a(n)={my(s=0, d=1, f=1); while (n>=d, s+=n\d; f++; d*=f); s} \\ _Harry J. Smith_, Jul 12 2009 %o A060832 (PARI) a(n) = round(sumpos(k=1, n\k!)); \\ _Michel Marcus_, Jan 24 2025 %o A060832 (Magma) [0] cat [&+[Floor(m/Factorial(k)):k in [1..m]]:m in [1..70]]; // _Marius A. Burtea_, Jul 11 2019 %Y A060832 Cf. A013936, A013939, A038663, A055881. %K A060832 nonn %O A060832 0,3 %A A060832 _Henry Bottomley_, May 01 2001