This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060845 #18 Sep 15 2024 22:00:16 %S A060845 3,7,7,13,23,23,31,47,61,79,113,113,127,167,241,251,283,337,359,509, %T A060845 523,619,727,839,953,1021,1327,1367,1669,1847,2039,2179,2179,2207, %U A060845 2399,2803,3121,3469,3719,4093,4483,4909,5039,5323,6229,6553,6857,6883,7919 %N A060845 Largest prime < a nontrivial power of a prime. %H A060845 Harry J. Smith, <a href="/A060845/b060845.txt">Table of n, a(n) for n = 1..1000</a> %F A060845 a(n) = prevprime[A025475(n)] = A007917[A025475(n)] = Max{p| p < A025475(n)} %e A060845 78125=5^7 follows 78121 %t A060845 Take[NextPrime[#,-1]&/@Union[Flatten[Table[Prime[p]^n,{n,2,20},{p,25}]]], 50] (* _Harvey P. Dale_, Mar 26 2012 *) %o A060845 (PARI) { m=1; for (n=1, 1000, m++; while(sigma(m)*eulerphi(m)*(1 - isprime(m)) <= (m - 1)^2, m++); write("b060845.txt", n, " ", precprime(m - 1)); ) } \\ _Harry J. Smith_, Jul 19 2009 %o A060845 (Python) %o A060845 from sympy import primepi, integer_nthroot, prevprime %o A060845 def A060845(n): %o A060845 def bisection(f,kmin=0,kmax=1): %o A060845 while f(kmax) > kmax: kmax <<= 1 %o A060845 while kmax-kmin > 1: %o A060845 kmid = kmax+kmin>>1 %o A060845 if f(kmid) <= kmid: %o A060845 kmax = kmid %o A060845 else: %o A060845 kmin = kmid %o A060845 return kmax %o A060845 def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) %o A060845 return prevprime(bisection(f,n,n)) # _Chai Wah Wu_, Sep 15 2024 %Y A060845 Cf. A025475, A000961, A001597, A001694, A007917, A007918, A013632, A013633, A049711, A060846. %K A060845 nonn %O A060845 1,1 %A A060845 _Labos Elemer_, May 03 2001