A060847 Difference between a nontrivial prime power (A246547) and the previous prime.
1, 1, 2, 3, 2, 4, 1, 2, 3, 2, 8, 12, 1, 2, 2, 5, 6, 6, 2, 3, 6, 6, 2, 2, 8, 3, 4, 2, 12, 2, 9, 8, 18, 2, 2, 6, 4, 12, 2, 3, 6, 4, 2, 6, 12, 8, 2, 6, 2, 1, 6, 8, 2, 2, 14, 4, 6, 2, 6, 2, 3, 20, 2, 12, 2, 2, 8, 14, 10, 18, 8, 6, 2, 2, 2, 12, 12, 19, 2, 6, 6, 20, 2, 2, 2, 8, 8, 2, 2, 8, 20, 12, 15, 2, 4
Offset: 1
Keywords
Examples
78125=5^7 follows 78121, the difference is 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10^5: # to consider prime powers <= N P:= select(isprime,[2,seq(i,i=3..floor(sqrt(N)),2)]): PP:= sort([seq(seq(p^k,k=2..ilog[p](N)),p=P)]): map(t -> t - prevprime(t), PP); # Robert Israel, Nov 13 2024
-
Python
from sympy import primepi, integer_nthroot, prevprime def A060847(n): def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return (a:=bisection(f,n,n))-prevprime(a) # Chai Wah Wu, Sep 13 2024
Comments