This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060873 #19 Jan 05 2025 19:51:36 %S A060873 5,7,10,13,16,17,20,21,23,25,26,29,31,34,36,37,38,41,42,43,46,49,50, %T A060873 51,52,55,57,59,61,62,63,64,65,67,71,72,73,74,78,80,81,82,83,85,86,88, %U A060873 89,91,92,93,97,98,100,101,104,105,107,109,111,113,114,117,118 %N A060873 Intrinsic 3-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base. %C A060873 All numbers are intrinsic 1- and (except 1 and 2) 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4. %H A060873 Jean-François Alcover, <a href="/A060873/b060873.txt">Table of n, a(n) for n = 1..1000</a> %H A060873 A. J. Di Scala and M. Sombra, <a href="http://arXiv.org/abs/math.GM/0105022">Intrinsic Palindromic Numbers</a>, arXiv:math/0105022 [math.GM], 2001. %H A060873 A. J. Di Scala and M. Sombra, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/42-1/quartscala01_2004.pdf">Intrinsic Palindromes</a>, Fib. Quart. 42, no. 1, Feb. 2004, pp. 76-81. %t A060873 testQ[n_, k_] := For[b = 2, b <= Ceiling[(n-1)^(1/(k-1))], b++, d = IntegerDigits[n, b]; If[Length[d] == k && d == Reverse[d], Return[True]]]; n0[k_] := 2^(k-1) + 1; Reap[Do[If[testQ[n, 3] === True, Print[n, " ", FromDigits[d], " b = ", b]; Sow[n]], {n, n0[3], 200}]][[2, 1]] (* _Jean-François Alcover_, Nov 07 2014 *) %Y A060873 Cf. A060874-A060879, A060947-A060949, A123586, A114255. %K A060873 nonn,base %O A060873 1,1 %A A060873 _Harvey P. Dale_, May 05 2001