cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060907 E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).

This page as a plain text file.
%I A060907 #13 Jul 25 2014 09:40:27
%S A060907 1,1,4,19,116,901,8422,89755,1061048,13746169,193901066,2965146559,
%T A060907 48946004956,867463969789,16405240966766,329147315037811,
%U A060907 6973157545554128,155446026607476145,3636697161715448914,89099916704329731895,2281451214192505136516
%N A060907 E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).
%C A060907 The number of functions from {1,2,...,n} into itself such that f(x) = f^5(x). - _Geoffrey Critzer_, Sep 18 2012
%D A060907 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
%H A060907 Alois P. Heinz, <a href="/A060907/b060907.txt">Table of n, a(n) for n = 0..200</a>
%F A060907 E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 4.
%p A060907 egf:= exp(x*exp(x)+x^2*exp(x)^2/2+x^4*exp(x)^4/4):
%p A060907 a:= n-> n!*coeff(series(egf, x, n+11), x, n):
%p A060907 seq(a(n), n=0..25);  # _Alois P. Heinz_, Jul 25 2014
%t A060907 nn=20;a=x Exp[x];Range[0,nn]!CoefficientList[Series[Exp[a+a^2/2+a^4/4],{x,0,nn}],x] (* _Geoffrey Critzer_, Sep 18 2012 *)
%Y A060907 Cf. A000949 - A000951, A060905 - A060913.
%Y A060907 Column k=5 of A245501.
%K A060907 nonn
%O A060907 0,3
%A A060907 _Vladeta Jovovic_, Apr 07 2001