cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060913 E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/3*x^3*exp(x*exp(x*exp(x)))^3).

This page as a plain text file.
%I A060913 #9 May 10 2013 12:44:45
%S A060913 1,1,3,18,157,1656,20727,300784,4955337,91229616,1853584651,
%T A060913 41147256624,989990665677,25647894553048,711630284942319,
%U A060913 21049888453838136,661180220075555473,21976354057916680416
%N A060913 E.g.f.: exp(x*exp(x*exp(x*exp(x))) + 1/3*x^3*exp(x*exp(x*exp(x)))^3).
%C A060913 a(n) is the number of functions f:{1,2,...,n} -> {1,2,...,n} such that the functional digraphs have cycles of length 1 or 3 and no element is at a distance of more than 3 from a cycle. - _Geoffrey Critzer_, Sep 23 2012
%D A060913 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
%F A060913 E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 3, m = 3.
%t A060913 nn=20; a=x Exp[x]; b=x Exp[a]; c=x Exp[b]; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0,nn]! CoefficientList[Series[Exp[c+c^3/3], {x, 0, nn}], x] (* _Geoffrey Critzer_, Sep 23 2012 *)
%Y A060913 Cf. A000949-A000951, A060905-A060913.
%K A060913 nonn
%O A060913 0,3
%A A060913 _Vladeta Jovovic_, Apr 07 2001