This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060917 #18 Feb 20 2018 09:00:16 %S A060917 1,12,150,2180,36855,715008,15697948,385300800,10463945085, %T A060917 311697869120,10108450408914,354630018043392,13384651003544275, %U A060917 540860323696035840,23300648262667635960,1066165291831917811712 %N A060917 Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=3. %C A060917 a(n) = A243098(n,3)/2. - _Alois P. Heinz_, Aug 19 2014 %H A060917 Vincenzo Librandi, <a href="/A060917/b060917.txt">Table of n, a(n) for n = 3..200</a> %F A060917 a(n) = (n-1)!/(k-1)!*Sum_{i=0..floor((n-k)/k)} 1/(i!*k^i)*n^(n-(i+1)*k)/(n-(i+1)*k)!, k=3. %F A060917 a(n) ~ 1/2*exp(1/3)*n^(n-1). - _Vaclav Kotesovec_, Nov 27 2012 %t A060917 nn = 20; CoefficientList[Series[E^(-1/3*LambertW[-x]^3)/2, {x, 0, nn}], x]* Range[0, nn]! (* _Vaclav Kotesovec_, Nov 27 2012 *) %o A060917 (PARI) x='x+O('x^30); Vec(serlaplace(exp(-lambertw(-x)^3/3)/2 - 1/2)) \\ _G. C. Greubel_, Feb 19 2018 %Y A060917 Cf. A057817, A060918, A243098. %K A060917 easy,nonn %O A060917 3,2 %A A060917 _Vladeta Jovovic_, Apr 10 2001