A060923 Bisection of Lucas triangle A060922: even-indexed members of column sequences of A060922 (not counting leading zeros).
1, 4, 1, 11, 17, 1, 29, 80, 39, 1, 76, 303, 315, 70, 1, 199, 1039, 1687, 905, 110, 1, 521, 3364, 7470, 6666, 2120, 159, 1, 1364, 10493, 29634, 37580, 20965, 4311, 217, 1, 3571, 31885, 109421, 181074, 148545
Offset: 0
Examples
Triangle begins: {1}; {4,1}; {11,17,1}; {29,80,39,1}; ... pLe(2,x) = 1+11*x-11*x^2+4*x^3.
Crossrefs
Formula
a(n, m) = A060922(2*n-m, m).
a(n, m) = ((2*(n-m)+1)*A060924(n-1, m-1) + 2*(4*n-3*m)*a(n-1, m-1) + 4*(2*n-m-1)*A060924(n-2, m-1))/(5*m), m >= n >= 1; a(n, 0)= A002878(n); else 0.
G.f. for column m >= 0: x^m*pLe(m+1, x)/(1-3*x+x^2)^(m+1), where pLe(n, x) := Sum_{m=0..n+floor(n/2)} A061186(n, m)*x^m are the row polynomials of the (signed) staircase A061186.
T(n,k) = 3*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2) + 4*T(n-3,k-2), T(0,0) = 1, T(1,0) = 4, T(1,1) = 1, T(2,0) = 11, T(2,1) = 17, T(2,2) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 21 2014