cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060924 Bisection of Lucas triangle A060922: odd-indexed members of column sequences of A060922 (not counting leading zeros).

Original entry on oeis.org

3, 7, 6, 18, 38, 9, 47, 158, 120, 12, 123, 566, 753, 280, 15, 322, 1880, 3612, 2568, 545, 18, 843, 5964, 15040, 16220, 7043, 942, 21, 2207, 18342, 57366, 83780, 57560, 16536, 1498, 24, 5778, 55162, 206115
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Row sums give A060927. Column sequences (without leading zeros) are, for m=0..5: A005248(n+1), 2*A061171, A061172, 4*A061173, A061174, 2*A061175.
Companion triangle A060923 (even part).

Examples

			{3}; {7,6}; {18,38,9}; {47,158,120,12}; ...; pLo(2,x)= 2*(3+x-2*x^2).
		

Crossrefs

Cf. A005248.

Formula

a(n, m) = A060922(2*n+1-m, m).
a(n, m) = ((2*n-m+1)*A060923(n, m-1) + 2*(2*(2*n+1)-3*m)*a(n-1, m-1) + 4*(2*n-m)*A060923(n-1, m-1))/(5*m), m >= n >= 1; a(n, 0) = A005248(n); otherwise 0.
G.f. for column m >= 0: x^m*pLo(m+1, x)/(1-3*x+x^2)^(m+1), where pLo(n, x) := Sum_{m=0..n+floor((n-1)/2)} A061187(n-1, m)*x^m are the row polynomials of the (signed) staircase A061187.
T(n,k) = 3*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2) + 4*T(n-3,k-2), T(0,0) = 3, T(1,0) = 7, T(1,1) = 6, T(2,0) = 18, T(2,1) = 38, T(2,2) = 9, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 21 2014