This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060925 #33 Apr 08 2021 03:41:37 %S A060925 1,4,11,34,101,304,911,2734,8201,24604,73811,221434,664301,1992904, %T A060925 5978711,17936134,53808401,161425204,484275611,1452826834,4358480501, %U A060925 13075441504,39226324511,117678973534,353036920601 %N A060925 a(n) = 2*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 4. %C A060925 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,2). - _Milan Janjic_, Jan 26 2010 %H A060925 Harry J. Smith, <a href="/A060925/b060925.txt">Table of n, a(n) for n = 0..200</a> %H A060925 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,3). %F A060925 Row sums of Lucas convolution triangle A060922. %F A060925 Inverse binomial transform of A003947. - _Philippe Deléham_, Jul 23 2005 %F A060925 a(n) = Sum_{m=0..n} A060922(n, m) = Sum_{j=1..n} (a(j-1)*A000204(n-j+1)) + A000204(n+1). %F A060925 a(n) = (5*3^n - (-1)^n)/4. %F A060925 G.f.: (1+2*x)/(1 - 2*x - 3*x^2). %F A060925 a(2n) = 3*a(2n-1) - 1; a(2n+1) = 3*a(2n) + 1. - _Philippe Deléham_, Jul 23 2005 %F A060925 Binomial transform is A003947. - _Paul Barry_, May 19 2003 %F A060925 E.g.f.: (-exp(-x) + 5*exp(3*x))/4. - _G. C. Greubel_, Apr 06 2021 %p A060925 A060925:= n-> (5*3^n - (-1)^n)/4; seq(A060925(n), n=0..30); # _G. C. Greubel_, Apr 06 2021 %t A060925 f[n_]:=3/(n+2);x=2;Table[x=f[x];Denominator[x],{n,0,5!}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 11 2010 *) %t A060925 LinearRecurrence[{2,3},{1,4},30] (* _Harvey P. Dale_, Mar 07 2014 *) %o A060925 (PARI) {a(n) = (5*3^n - (-1)^n)/4}; %o A060925 vector(30, n, a(n-1)) \\ _Harry J. Smith_, Jul 19 2009 \\ modified by _G. C. Greubel_, Apr 06 2021 %o A060925 (Magma) [(5*3^n - (-1)^n)/4: n in [0..30]]; // _G. C. Greubel_, Apr 06 2021 %o A060925 (Sage) [(5*3^n - (-1)^n)/4 for n in (0..30)] # _G. C. Greubel_, Apr 06 2021 %Y A060925 Cf. A000204, A003947, A060922. %K A060925 nonn,easy %O A060925 0,2 %A A060925 _Wolfdieter Lang_, Apr 20 2001 %E A060925 Recurrence, now used as definition, from _Philippe Deléham_, Jul 23 2005 %E A060925 Entry revised by _N. J. A. Sloane_, Sep 10 2006