cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060927 Row sums of triangle A060924 (odd part of bisection of Lucas triangle).

This page as a plain text file.
%I A060927 #9 Jul 02 2023 17:41:52
%S A060927 3,13,65,337,1737,8945,46073,237313,1222345,6296017,32429337,
%T A060927 167036065,860364393,4431539313,22825840825,117570661697,605579465737,
%U A060927 3119200691985,16066286106713,82753748396513
%N A060927 Row sums of triangle A060924 (odd part of bisection of Lucas triangle).
%H A060927 G. C. Greubel, <a href="/A060927/b060927.txt">Table of n, a(n) for n = 0..1000</a>
%H A060927 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5, 0, 4).
%F A060927 a(n) = Sum_{j=0..n} A060924(n, j).
%F A060927 G.f.: (3-2*x)/(1-5*x-4*x^3).
%F A060927 a(n) = 3*A060928(n) - 2*A060928(n-1), n >= 1; a(0)=3.
%t A060927 CoefficientList[Series[(3-2*x)/(1-5*x-4*x^3), {x, 0, 30}], x] (* _G. C. Greubel_, Apr 07 2021 *)
%o A060927 (Magma)
%o A060927 R<x>:=PowerSeriesRing(Integers(), 30);
%o A060927 Coefficients(R!( (3-2*x)/(1-5*x-4*x^3) )); // _G. C. Greubel_, Apr 07 2021
%o A060927 (Sage)
%o A060927 def A060927_list(prec):
%o A060927     P.<x> = PowerSeriesRing(ZZ, prec)
%o A060927     return P( (3-2*x)/(1-5*x-4*x^3) ).list()
%o A060927 A060927_list(30) # _G. C. Greubel_, Apr 07 2021
%Y A060927 Cf. A060926 (row sums of A060923 companion triangle).
%Y A060927 Cf. A060924, A060928.
%K A060927 nonn,easy
%O A060927 0,1
%A A060927 _Wolfdieter Lang_, Apr 20 2001