This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060930 #12 Apr 08 2021 08:22:58 %S A060930 1,12,70,280,905,2568,6666,16220,37580,83780,181074,381488,786715, %T A060930 1593160,3176210,6246732,12139859,23344760,44471340,84005640, %U A060930 157483176,293201912,542468100,997906400,1826073525 %N A060930 Third convolution of Lucas numbers A000032(n+1), n >= 0. %H A060930 G. C. Greubel, <a href="/A060930/b060930.txt">Table of n, a(n) for n = 0..1000</a> %H A060930 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-8,5,8,-2,-4,-1). %F A060930 G.f.: ((1+2*x)/(1-x-x^2))^4. %F A060930 a(n) = A060922(n+3, 3) (fourth column of Lucas triangle). %F A060930 a(n) = (2*(25*n^3 + 60*n^2 + 35*n +24)*L(n+2) + (25*n^3 + 90*n^2 + 95*n + 6)*L(n+1))/(3!*5^2), with the Lucas numbers L(n) = A000032(n). %t A060930 Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* _G. C. Greubel_, Apr 08 2021 *) %o A060930 (Magma) %o A060930 R<x>:=PowerSeriesRing(Integers(), 40); %o A060930 Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // _G. C. Greubel_, Apr 08 2021 %o A060930 (Sage) %o A060930 def A060930_list(prec): %o A060930 P.<x> = PowerSeriesRing(ZZ, prec) %o A060930 return P( ((1+2*x)/(1-x-x^2))^4 ).list() %o A060930 A060930_list(40) # _G. C. Greubel_, Apr 08 2021 %Y A060930 Cf. A000032, A000204, A004799, A060922, A060929. %K A060930 nonn,easy %O A060930 0,2 %A A060930 _Wolfdieter Lang_, Apr 20 2001