This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060931 #7 Apr 08 2021 03:49:38 %S A060931 1,15,110,545,2120,7043,20965,57560,148545,365045,862224,1970905, %T A060931 4382820,9520315,20265665,42385132,87284120,177293730,355738710, %U A060931 705980760,1387213926,2701362950,5217448800,10001654350 %N A060931 Fourth convolution of Lucas numbers A000032(n+1), n >= 0. %H A060931 G. C. Greubel, <a href="/A060931/b060931.txt">Table of n, a(n) for n = 0..1000</a> %H A060931 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5,-10,15,11,-15,-10,5,5,1). %F A060931 a(n) = A060921(n+4, 4) (fifth column of Lucas triangle). %F A060931 a(n) = (n+1)*( (15*n^3 +55*n^2 +50*n +24)*L(n+2) + 2*(5*n^3 +15*n^2 +10*n +24)*L(n+1))/5!, with the Lucas numbers L(n)=A000032(n). %F A060931 G.f.: ((1+2*x)/(1-x-x^2))^5. %t A060931 Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* _G. C. Greubel_, Apr 08 2021 *) %o A060931 (Magma) %o A060931 R<x>:=PowerSeriesRing(Integers(), 40); %o A060931 Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // _G. C. Greubel_, Apr 08 2021 %o A060931 (Sage) %o A060931 def A060931_list(prec): %o A060931 P.<x> = PowerSeriesRing(ZZ, prec) %o A060931 return P( ((1+2*x)/(1-x-x^2))^5 ).list() %o A060931 A060931_list(40) # _G. C. Greubel_, Apr 08 2021 %Y A060931 Cf. A000032, A000204, A004799, A060922, A060929, A060930. %K A060931 nonn,easy %O A060931 0,2 %A A060931 _Wolfdieter Lang_, Apr 20 2001