This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060935 #13 Aug 29 2023 14:11:21 %S A060935 1,2,4,12,72,1010,36302,3501500,984382830,820391106394, %T A060935 2231837962830894,19443994569352596154,611248544067759392038426, %U A060935 65374059149370152526265388842,27613396368509694864033710442373202 %N A060935 Sum of entries in n-th antidiagonal in A060854. %H A060935 Alois P. Heinz, <a href="/A060935/b060935.txt">Table of n, a(n) for n = 1..40</a> %F A060935 a(n) ~ c(n) * sqrt(Pi) * exp(7/12 + n/2 + n^2/8) * n^(11/12 + n/2 + n^2/4) / (A * 2^(5/6 + 3*n/2 + 3*n^2/4)), where c(n) = 2 if n is even and c(n) = (n/2)^(1/4) if n is odd, A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Aug 29 2023 %p A060935 T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1): %p A060935 a:= n-> add (T(k, 1+n-k), k=1..n): %p A060935 seq (a(n), n=1..20); # _Alois P. Heinz_, Aug 06 2012 %t A060935 A060854[n_, k_]:= (k*(n-k+1))!*BarnesG[k+1]*BarnesG[n-k+2]/BarnesG[n+2]; %t A060935 Table[Sum[A060854[n, k], {k,n}], {n,20}] (* _G. C. Greubel_, Apr 07 2021 *) %o A060935 (Magma) %o A060935 A060854:= func< n,k | Factorial((n-k+1)*k)*(&*[ Factorial(j)/Factorial(n-k+j+1): j in [0..k-1] ]) >; %o A060935 [(&+[ A060854(n, k): k in [1..n] ]): n in [1..20]]; // _G. C. Greubel_, Apr 07 2021 %o A060935 (Sage) %o A060935 def A060854(n, k): return factorial((n-k+1)*k)*product( factorial(j)/factorial(n-k+j+1) for j in (0..k-1) ) %o A060935 def A060935(n): return sum( A060854(n, k) for k in (1..n) ) %o A060935 [A060935(n) for n in (1..20)] # _G. C. Greubel_, Apr 07 2021 %Y A060935 Cf. A060854. %K A060935 nonn,easy %O A060935 1,2 %A A060935 _N. J. A. Sloane_, May 06 2001 %E A060935 More terms from _Frank Ellermann_, Jun 15 2001