cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060938 Maximal degree of an irreducible representation of a group with n elements.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 5, 7, 3, 2, 1, 5, 1, 2, 3, 4, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 2, 1, 6, 1, 5, 3, 2, 1, 6, 1, 2, 1
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Keywords

Comments

a(n) = 1 iff every group of order n is Abelian i.e. n belongs to sequence A051532.
a(m)a(n) <= a(mn). - Eric M. Schmidt, Oct 17 2012

Examples

			a(6) = 2 because for the Abelian group with 6 elements the degrees are all 1 and for the symmetric group S_3 the degrees are 1,1,2.
		

Crossrefs

Cf. A051532.

Programs

  • GAP
    A060938 := function(n) local max, divs, maxpos, degs, i; if (n=1) then return 1; fi; divs := DivisorsInt(n); maxpos := divs[Int(Length(divs)/2)]; max := 1; for i in [1..NumberSmallGroups(n)] do degs := CharacterDegrees(SmallGroup(n, i)); max := Maximum(max, degs[Length(degs)][1]); if (max = maxpos) then return max; fi; od; return max; end;

Extensions

More terms from Eric M. Schmidt, Oct 17 2012