A060938 Maximal degree of an irreducible representation of a group with n elements.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 5, 7, 3, 2, 1, 5, 1, 2, 3, 4, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 2, 1, 6, 1, 5, 3, 2, 1, 6, 1, 2, 1
Offset: 1
Keywords
Examples
a(6) = 2 because for the Abelian group with 6 elements the degrees are all 1 and for the symmetric group S_3 the degrees are 1,1,2.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1535
Crossrefs
Cf. A051532.
Programs
-
GAP
A060938 := function(n) local max, divs, maxpos, degs, i; if (n=1) then return 1; fi; divs := DivisorsInt(n); maxpos := divs[Int(Length(divs)/2)]; max := 1; for i in [1..NumberSmallGroups(n)] do degs := CharacterDegrees(SmallGroup(n, i)); max := Maximum(max, degs[Length(degs)][1]); if (max = maxpos) then return max; fi; od; return max; end;
Extensions
More terms from Eric M. Schmidt, Oct 17 2012
Comments