cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060953 Rank of elliptic curve y^2 = x^3 + n*x.

This page as a plain text file.
%I A060953 #29 Jul 10 2019 04:05:52
%S A060953 0,0,1,0,1,0,0,1,1,0,0,0,1,2,1,0,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,2,2,
%T A060953 1,0,1,0,2,1,0,0,0,0,0,2,1,1,1,0,1,0,1,0,2,1,0,0,0,1,1,0,2,0,2,2,1,2,
%U A060953 1,0,0,0,2,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,2,1,0,1,1,2,1,0,0,1,2,1,1,0,0,1,2
%N A060953 Rank of elliptic curve y^2 = x^3 + n*x.
%H A060953 Seiichi Manyama, <a href="/A060953/b060953.txt">Table of n, a(n) for n = 1..1000</a>
%H A060953 H. Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/ec/eca1/ec02rp.txt">Tables of Elliptic Curves</a>
%H A060953 F. Richman, <a href="http://math.fau.edu/Richman/elliptic.htm">Elliptic curves</a>
%H A060953 K. Rubin and A. Silverberg, <a href="http://www.ams.org/bull/2002-39-04/S0273-0979-02-00952-7/home.html">Ranks of elliptic curves</a>
%F A060953 a(-n) = A060952(n). - _Michael Somos_, Dec 15 2011
%o A060953 (PARI) { A060953(n) = ellanalyticrank( ellinit([0,0,0,n,0]) )[1]; }
%Y A060953 Cf. A060748, A060838, A060950-A060953.
%K A060953 nonn,nice
%O A060953 1,14
%A A060953 _N. J. A. Sloane_, May 10 2001
%E A060953 Lambert Klasen (Lambert.Klasen(AT)gmx.net), Mar 31 2005, kindly rechecked this sequence against the Mishima web site and found no errors.
%E A060953 Corrected Apr 10 2005 at the suggestion of _James R. Buddenhagen_. There were errors caused by the fact that Mishima lists each curve of rank two twice, once for each generator.
%E A060953 Extended by _Max Alekseyev_, Mar 09 2009