This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A060958 #17 Apr 04 2021 08:35:19 %S A060958 46,31,51,42,27,47,39,23,43,35,55,39,31,51,36,27,47,32,52,43,35,48,40, %T A060958 31,51,36,28,47,32,52,44,28,48,40,25,44,36,56,41,32,52,37,29,48,40,25, %U A060958 45,36,49,41,33,52,37,29,49,33,53,45,30,49,41,26,46,37,29,42 %N A060958 Gregorian Easter dates, starting after 2000-04-23, a(2000) = 54. %C A060958 Formulas may differ legitimately for years before 1583 (e.g., 1497). %H A060958 Physikalisch-Technische Bundesanstalt, <a href="http://www.ptb.de/en/org/4/43/432/east.htm">Gauss's formula</a> %H A060958 L. Huber, <a href="http://astro.nmsu.edu/~lhuber/leaphist.html">Oudin's formula</a> %H A060958 H. Lichtenberg, <a href="http://dx.doi.org/10.1006/hmat.1997.2170">Zur Interpretation der Gauss-schen Osterformel und ihrer Ausnahmeregeln</a>, Historia Mathematica 24 (1997), pp. 441-444. %H A060958 E. Weisstein, <a href="http://scienceworld.wolfram.com/astronomy/Easter.html">Easter</a> %H A060958 <a href="/index/Ca#calendar">Index entries for sequences related to calendars</a> %e A060958 a(2001) = 46 = 31 + 15 => 2001-04-15, a(2002) = 31 => 2002-03-31. %e A060958 a(y) + 49 gives Whitsunday, i.e., a(y) - 12 in May or a(y) - 43 in June. %o A060958 (Python) %o A060958 from dateutil.easter import * %o A060958 def a(n): return (easter(n).month-3)*31 + easter(n).day %o A060958 print([a(n) for n in range(2001, 2067)]) # _Michael S. Branicky_, Apr 04 2021 %K A060958 nonn,easy %O A060958 2001,1 %A A060958 _Frank Ellermann_, May 10 2001