cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060967 Number of squared primes <= 2^n.

This page as a plain text file.
%I A060967 #53 Mar 22 2025 04:42:54
%S A060967 0,0,1,1,2,3,4,5,6,8,11,14,18,24,31,42,54,72,97,128,172,229,309,418,
%T A060967 564,760,1028,1393,1900,2585,3512,4792,6542,8952,12251,16777,23000,
%U A060967 31579,43390,59631,82025,112957,155611,214516,295947,408493,564163,779638
%N A060967 Number of squared primes <= 2^n.
%H A060967 Amiram Eldar, <a href="/A060967/b060967.txt">Table of n, a(n) for n = 0..150</a> (terms 0..63 from Harry J. Smith, terms 64..112 from Hiroaki Yamanouchi, terms 113..125 from Ray Chandler)
%H A060967 <a href="/index/Pri#primepop">Index entries for sequences related to numbers of primes in various ranges</a>.
%F A060967 a(2*n) = A007053(n). - _Amiram Eldar_, Jul 10 2024
%F A060967 a(n) = A000720(A017910(n)). - _Amiram Eldar_, Mar 22 2025
%e A060967 For n = 8, the squared primes not exceeding 2^8 = 256 are 4, 9, 25, 49, 121, 169, so a(8) = 6.
%t A060967 Table[ PrimePi[ Floor[ 2^(g/2)//N ] ], {g, 1, 75} ]
%o A060967 (PARI) a(n) = { primepi(sqrtint(2^n)) } \\ _Harry J. Smith_, Jul 15 2009
%Y A060967 Cf. A000720, A001248, A007053, A017910, A036386, A060969, A060970, A060971, A122121.
%K A060967 nonn
%O A060967 0,5
%A A060967 _Labos Elemer_, May 09 2001
%E A060967 a(0) prepended by _Harry J. Smith_, Jul 15 2009