cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073277 Irregular primes with irregularity index two.

Original entry on oeis.org

157, 353, 379, 467, 547, 587, 631, 673, 691, 809, 929, 1291, 1297, 1307, 1663, 1669, 1733, 1789, 1933, 1997, 2003, 2087, 2273, 2309, 2371, 2383, 2423, 2441, 2591, 2671, 2789, 2909, 2957, 3391, 3407, 3511, 3517, 3533, 3539, 3559, 3593, 3617, 3637, 3851
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2002

Keywords

Comments

Subsequence of A060974.

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; k = 1; c = 0; While[ 2*k < p - 3, If[ Mod[ Numerator[ BernoulliB[2*k]], p] == 0, c++ ]; k++ ]; If[ c == 2, Print[p]], {n, 3, 550} ]

A060975 Irregular primes with irregularity index three.

Original entry on oeis.org

491, 617, 647, 1151, 1217, 1811, 1847, 2939, 3833, 4003, 4657, 4951, 6763, 7687, 8831, 9011, 10463, 10589, 12073, 13217, 14533, 14737, 14957, 15287, 15787, 15823, 16007, 17681, 17863, 18713, 18869, 20533, 20939, 24019, 24659, 25153, 26561
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; k = 1; c = 0; While[ 2*k < p - 3, If[ Mod[ Numerator[ BernoulliB[2*k]], p] == 0, c++ ]; k++ ]; If[ c == 3, Print[p]], {n, 3, 1000} ]
    Do[p = Prime@n; k = 1; c = 0; While[ 2*k < p - 3, If[ Mod[ Numerator[ BernoulliB[2*k]], p] == 0, c++ ]; k++ ]; If[ c == 3, Print@p], {n, 3, 13887} ]

Extensions

Extended by Robert G. Wilson v, Sep 20 2006

A073276 Irregular primes (A000928) with irregularity index one.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 233, 257, 263, 271, 283, 293, 307, 311, 347, 389, 401, 409, 421, 433, 461, 463, 523, 541, 557, 577, 593, 607, 613, 619, 653, 659, 677, 683, 727, 751, 757, 761, 773, 797, 811, 821, 827, 839, 877, 881, 887, 953, 971, 1061, 1091
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2002

Keywords

Comments

A prime p is regular if and only if the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) are not divisible by p.
In other words, irregular primes p dividing the numerator of B(2k) for a single k, 1<=k<(p-1)/2.

Crossrefs

Programs

  • Mathematica
    Do[p = Prime[n]; k = 1; c = 0; While[ 2*k < p - 3, If[ Mod[ Numerator[ BernoulliB[2*k]], p] == 0, c++ ]; k++ ]; If[ c == 1, Print[p]], {n, 3, 200} ]

A308765 Irregular triangle T(n,k) read by rows with 1 <= k <= A091887 even indices 2i such that n-th irregular prime p (A000928) divides the numerator of the Bernoulli numbers B_{2i} (A000367) with 0 <= 2i <= p-3.

Original entry on oeis.org

32, 44, 58, 68, 24, 22, 130, 62, 110, 84, 164, 100, 84, 20, 156, 88, 292, 280, 186, 300, 100, 174, 200, 382, 126, 240, 366, 196, 130, 94, 194, 292, 336, 338, 400, 86, 270, 486, 222, 52, 90, 92, 22, 592, 522, 20, 174, 338, 428, 80, 226, 236, 242, 554, 48, 224, 408, 502, 628, 32, 12, 200, 378, 290, 514, 260, 732, 220, 330, 628, 544, 744, 102, 66, 868, 162, 418, 520, 820, 156, 166
Offset: 1

Views

Author

Martin Renner, Jun 23 2019

Keywords

Comments

First index T(n,1) in row n is A035112(n).

Examples

			Triangle starts with
n = 1 => p = 37 divides the numerator of B_{32} = -7709321041217;
n = 2 => p = 59: B_{44};
n = 3 => p = 67: B_{58};
n = 4 => p = 101: B_{68};
n = 5 => p = 103: B_{24};
n = 6 => p = 131: B_{22};
n = 7 => p = 149: B_{130};
n = 8 => p = 157: B_{62}, B_{110};
n = 9 => p = 233: B_{84};
etc.
		

Crossrefs

Programs

  • Maple
    T:=[]:
    for j from 2 to 168 do
      p:=ithprime(j);
      B:=[]:
      for i from 1 to (p-3)/2 do
        if type(numer(bernoulli(2*i))/p,integer) then B:=[op(B),2*i]: fi:
      od:
      T:=[op(T),op(B)];
    od:
    op(T);
Showing 1-4 of 4 results.