A060982 a(n) = Smallest nontrivial number k > 9 such that |first (leftmost) decimal digit of k - second digit + third digit - fourth digit ...| = n.
11, 10, 13, 14, 15, 16, 17, 18, 19, 90, 109, 209, 309, 409, 509, 609, 709, 809, 909, 10909, 20909, 30909, 40909, 50909, 60909, 70909, 80909, 90909, 1090909, 2090909, 3090909, 4090909, 5090909, 6090909, 7090909, 8090909, 9090909, 109090909, 209090909, 309090909
Offset: 0
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..4500
Programs
-
Mathematica
m = 2; Do[ While[ a = IntegerDigits[ m ]; l = Length[ a ]; e = o = {}; Do[ o = Append[ o, a[ [ 2k - 1 ] ] ], {k, 1, l/2 + .5} ]; Do[ e = Append[ e, a[ [ 2k ] ] ], {k, 1, l/2} ]; Abs[ Apply[ Plus, o ] - Apply[ Plus, e ] ] != n, m++ ]; Print[ m ], {n, 1, 50} ]
-
Python
def f(m): return abs(sum((-1)**i*int(d) for i, d in enumerate(str(m)))) def a(n): m = 10 while f(m) != n: m += 1 return m print([a(n) for n in range(28)]) # Michael S. Branicky, Nov 10 2021
-
Python
# faster version based on formula def a(n): if n < 10: return [11, 10, 13, 14, 15, 16, 17, 18, 19, 90][n] q, r = divmod(n, 9) return int(str(r if r else 9) + "09"*(q if r else q-1)) print([a(n) for n in range(40)]) # Michael S. Branicky, Nov 10 2021
Formula
For n > 8, if r = 0, a(n) = 90..90, else a(n) = r09..09, where r = n mod 9 and 90 and 09, resp., occur ceiling(n/9) times. - Michael S. Branicky, Nov 10 2021
Extensions
a(39) and beyond from Michael S. Branicky, Nov 10 2021
Definition amended by Georg Fischer, May 24 2022
Comments