cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060982 a(n) = Smallest nontrivial number k > 9 such that |first (leftmost) decimal digit of k - second digit + third digit - fourth digit ...| = n.

Original entry on oeis.org

11, 10, 13, 14, 15, 16, 17, 18, 19, 90, 109, 209, 309, 409, 509, 609, 709, 809, 909, 10909, 20909, 30909, 40909, 50909, 60909, 70909, 80909, 90909, 1090909, 2090909, 3090909, 4090909, 5090909, 6090909, 7090909, 8090909, 9090909, 109090909, 209090909, 309090909
Offset: 0

Views

Author

Robert G. Wilson v, May 10 2001

Keywords

Comments

Starting with 109, this sequence has the same terms as A061479 and A061882. - Georg Fischer, May 24 2022

Crossrefs

Programs

  • Mathematica
    m = 2; Do[ While[ a = IntegerDigits[ m ]; l = Length[ a ]; e = o = {}; Do[ o = Append[ o, a[ [ 2k - 1 ] ] ], {k, 1, l/2 + .5} ]; Do[ e = Append[ e, a[ [ 2k ] ] ], {k, 1, l/2} ]; Abs[ Apply[ Plus, o ] - Apply[ Plus, e ] ] != n, m++ ]; Print[ m ], {n, 1, 50} ]
  • Python
    def f(m): return abs(sum((-1)**i*int(d) for i, d in enumerate(str(m))))
    def a(n):
        m = 10
        while f(m) != n: m += 1
        return m
    print([a(n) for n in range(28)]) # Michael S. Branicky, Nov 10 2021
    
  • Python
    # faster version based on formula
    def a(n):
        if n < 10: return [11, 10, 13, 14, 15, 16, 17, 18, 19, 90][n]
        q, r = divmod(n, 9)
        return int(str(r if r else 9) + "09"*(q if r else q-1))
    print([a(n) for n in range(40)]) # Michael S. Branicky, Nov 10 2021

Formula

For n > 8, if r = 0, a(n) = 90..90, else a(n) = r09..09, where r = n mod 9 and 90 and 09, resp., occur ceiling(n/9) times. - Michael S. Branicky, Nov 10 2021

Extensions

a(39) and beyond from Michael S. Branicky, Nov 10 2021
Definition amended by Georg Fischer, May 24 2022