A060983 Number of primitive sublattices of index n in generic 3-dimensional lattice.
1, 7, 13, 35, 31, 91, 57, 154, 130, 217, 133, 455, 183, 399, 403, 644, 307, 910, 381, 1085, 741, 931, 553, 2002, 806, 1281, 1209, 1995, 871, 2821, 993, 2632, 1729, 2149, 1767, 4550, 1407, 2667, 2379, 4774, 1723, 5187, 1893, 4655, 4030, 3871
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^2 + p + 1) * If[e == 1, 1, p^(e - 2)*(p^e + (p^(e - 1) - 1)/(p - 1))]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
Formula
From Álvar Ibeas, Oct 30 2015: (Start)
a(n) = Sum_{d^3 | n} mu(d) * A001001(n/d^3).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) / zeta(3s). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * zeta(3) * n^3 / (18*zeta(9)). - Vaclav Kotesovec, Feb 01 2019
Multiplicative with a(p) = p^2+p+1, and a(p^e) = p^(e-2)*(p^e + (p^(e-1)-1)/(p-1)) for e >= 2. - Amiram Eldar, Aug 27 2023
Comments