cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060995 Number of routes of length 2n on the sides of an octagon from a point to opposite point.

This page as a plain text file.
%I A060995 #29 Aug 17 2024 16:51:49
%S A060995 0,2,8,28,96,328,1120,3824,13056,44576,152192,519616,1774080,6057088,
%T A060995 20680192,70606592,241065984,823050752,2810071040,9594182656,
%U A060995 32756588544,111837988864,381838778368,1303679135744
%N A060995 Number of routes of length 2n on the sides of an octagon from a point to opposite point.
%C A060995 Also the 2nd row in the 2-shuffle Phi_2(W(sqrt(2))) of the Fraenkel-Kimberling publication. - _R. J. Mathar_, Aug 17 2009
%C A060995 First differences of A056236. - _Jeremy Gardiner_, Aug 11 2013
%H A060995 Harry J. Smith, <a href="/A060995/b060995.txt">Table of n, a(n) for n=1,...,200</a>
%H A060995 Tomislav Doslic, I. Zubac, <a href="http://amc-journal.eu/index.php/amc/article/view/851">Counting maximal matchings in linear polymers</a>, Ars Mathematica Contemporanea 11 (2016) 255-276.
%H A060995 International Mathematical Olympiad, <a href="http://www.kalva.demon.co.uk/imo/isoln/isoln796.html">1979 Problem 6</a>
%H A060995 A. S. Fraenkel, C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discr. Math. 126 (1-3) (1994) 137-149. [From _R. J. Mathar_, Aug 17 2009]
%H A060995 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, -2).
%F A060995 G.f.: 2*x^2/(1-4*x+2*x^2).
%F A060995 a(n) = (2 + sqrt(2))^(n-1)/sqrt(2) - (2-sqrt(2))^(n-1)/sqrt(2).
%F A060995 a(n) = 4*a(n-1)-2*a(n-2).
%F A060995 a(n) = 2*A007070(n-2)
%F A060995 G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 + 1/( 1 - 4*x^2/(4*x^2 + 2*(1-2*x)^2/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 16 2013
%t A060995 LinearRecurrence[{4,-2},{0,2},40] (* _Harvey P. Dale_, Mar 03 2012 *)
%o A060995 (PARI) { for (n=1, 200, if (n>2, a=4*a1 - 2*a2; a2=a1; a1=a, if (n==1, a=a2=0, a=a1=2)); write("b060995.txt", n, " ", a) ) } \\ _Harry J. Smith_, Jul 16 2009
%o A060995 (Sage) [(lucas_number2(n,4,2)-lucas_number2(n-1,4,2)) for n in range(0, 24)] # _Zerinvary Lajos_, Nov 10 2009
%K A060995 nonn,easy
%O A060995 1,2
%A A060995 _Henry Bottomley_, May 13 2001