cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060997 Decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 2, 3, 1, 1, 7, 5, 8, 3, 1, 7, 1, 8, 3, 4, 5, 5, 7, 7, 5, 9, 9, 1, 8, 2, 0, 4, 3, 1, 5, 1, 2, 7, 6, 7, 9, 0, 5, 9, 8, 0, 5, 2, 3, 4, 3, 4, 4, 2, 8, 6, 3, 6, 3, 9, 4, 3, 0, 9, 1, 8, 3, 2, 5, 4, 1, 7, 2, 9, 0, 0, 1, 3, 6, 5, 0, 3, 7, 2, 6, 4, 3, 5, 7, 8, 6, 1, 1, 4, 6, 5, 9, 5, 0
Offset: 1

Views

Author

Robert G. Wilson v, May 14 2001

Keywords

Comments

The value of this continued fraction is the ratio of two Bessel functions: BesselI(0,2)/BesselI(1,2) = A070910/A096789. Or, equivalently, to the ratio of the sums: Sum_{n>=0} 1/(n!n!) and Sum_{n>=0} n/(n!n!). - Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
1.43312...=[1,2,3,4,5,...] = shape of a rectangle which partitions into n squares at stage n; i.e., this is an example of the match between the continued fraction of a number r and a rectangle having shape r. See A188640. - Clark Kimberling, Apr 09 2011

Examples

			1.433127426722311758317183455775...
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 110}, RealDigits[FromContinuedFraction[Range[nn]], 10, nn][[1]]]
    (* Or *) RealDigits[ BesselI[0, 2] / BesselI[1, 2], 10, 110] [[1]]
    (* Or *) RealDigits[ Sum[1/(n!n!), {n, 0, Infinity}] / Sum[n/(n!n!), {n, 0, Infinity}], 10, 110] [[1]]
  • Maxima
    set_display('none)$fpprec:100$bfloat(cfdisrep(makelist(x,x,1,1000))); /* Dimitri Papadopoulos, Oct 25 2022 */
  • PARI
    besseli(0,2)/besseli(1,2) \\ Charles R Greathouse IV, Feb 19 2014
    

Formula