cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061020 Negate primes in factorizations of divisors of n, then sum.

This page as a plain text file.
%I A061020 #71 Jun 30 2025 20:04:27
%S A061020 1,-1,-2,3,-4,2,-6,-5,7,4,-10,-6,-12,6,8,11,-16,-7,-18,-12,12,10,-22,
%T A061020 10,21,12,-20,-18,-28,-8,-30,-21,20,16,24,21,-36,18,24,20,-40,-12,-42,
%U A061020 -30,-28,22,-46,-22,43,-21,32,-36,-52,20,40,30,36,28,-58,24,-60,30,-42,43,48,-20,-66,-48,44,-24,-70,-35
%N A061020 Negate primes in factorizations of divisors of n, then sum.
%C A061020 Analog of sigma function A000203(n) with primes negated.
%C A061020 Unsigned sequence |a(n)| (A206369) gives the number of numbers 1 <= k <= n for which GCD(k,n) is a square. |a(n)| = Sum_{d|n} d*(-1)^bigomega(n/d). - _Vladeta Jovovic_, Dec 29 2002
%H A061020 T. D. Noe, <a href="/A061020/b061020.txt">Table of n, a(n) for n = 1..10000</a>
%H A061020 Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, <a href="https://doi.org/10.2140/involve.2022.15.251">Finding structure in sequences of real numbers via graph theory: a problem list</a>, Involve, a Journal of Mathematics, Vol. 15, No. 2 (2022), pp. 251-270; <a href="https://arxiv.org/abs/2012.04625">arXiv preprint</a>, arXiv:2012.04625 [math.CO], 2020-2021.
%H A061020 László Tóth, <a href="http://arxiv.org/abs/1111.4842">A survey of the alternating sum-of-divisors function</a>, arXiv:1111.4842 [math.NT], 2011-2014.
%F A061020 Replace each divisor d of n by A061019[d] and sum. Replace p^q with (1-(-p)^(q+1))/(1+p) in prime factorization of n.
%F A061020 Inverse mobius transform of A061019. In other words a(n) = Sum_{d|n} d*(-1)^bigomega(d), where bigomega(n) = A001222(n).
%F A061020 a(n) = Sum_{d|n} d*mu(core(d)) where core(x) = A007913(x) is the smallest number such that x*core(x) is a square. - _Benoit Cloitre_, Apr 07 2002
%F A061020 G.f.: A(x) = Sum_{k>=1} lambda(k)*k*x^k/(1 - x^k) where lambda(k) is the Liouville function, A008836. - _Stuart Clary_, Apr 15 2006
%F A061020 G.f.: A(x) is x times the logarithmic derivative of A118206(x). - _Stuart Clary_, Apr 15 2006
%F A061020 Dirichlet g.f.: zeta(s)*zeta(2 s - 2)/zeta(s - 1). - _Stuart Clary_, Apr 15 2006
%F A061020 a(n) = Sum_{d|n} d*lambda(d), where lambda(n) is A008836(n). - _Enrique Pérez Herrero_, Aug 29 2013
%e A061020 a(12) = 1-2-3+4+6-12 = (1-2+4)*(1-3) = -6.
%p A061020 with(numtheory):
%p A061020 A061020 := proc(n) local d; add(d*(-1)^bigomega(d), d=divisors(n)) end:
%p A061020 seq(A061020(n), n=1..72); # _Peter Luschny_, Aug 29 2013
%t A061020 nmax = 72; Drop[ CoefficientList[ Series[ Sum[ LiouvilleLambda[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* _Stuart Clary_, Apr 15 2006, updated by _Jean-François Alcover_, Dec 04 2017 *)
%t A061020 f[p_, e_] := ((-p)^(e+1)-1)/(-p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 24 2023 *)
%o A061020 (PARI) for(n=1,100,print1(sumdiv(n,d,(d)*moebius(core(d))),","))
%o A061020 (PARI) a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1+p*X))[n]) \\ _Ralf Stephan_
%o A061020 (PARI) A061020(n) = {my(f=factorint(n)); prod(k=1, #f[,2], ((-f[k,1])^(f[k,2]+1)-1)/(-f[k,1]-1))} \\ _Andrew Lelechenko_, Apr 22 2014
%o A061020 (Haskell)
%o A061020 a061020 = sum . map a061019 . a027750_row
%o A061020 -- _Reinhard Zumkeller_, Feb 08 2012
%Y A061020 Cf. A000203, A061019, A076792, A206369.
%Y A061020 Cf. A027750, A007913.
%K A061020 easy,sign,mult
%O A061020 1,3
%A A061020 _Marc LeBrun_, Apr 13 2001