This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061034 #29 May 25 2018 14:31:30 %S A061034 1,2,2,5,2,4,2,16,6,4,2,10,2,4,4,67,2,12,2,10,4,4,2,32,8,4,28,10,2,8, %T A061034 2,374,4,4,4,30,2,4,4,32,2,8,2,10,12,4,2,134,10,16,4,10,2,56,4,32,4,4, %U A061034 2,20,2,4,12,2825,4,8,2,10,4,8,2,96,2,4,16,10,4,8,2,134,212,4,2 %N A061034 Maximal number of subgroups in an Abelian group with n elements. %C A061034 a(n) is multiplicative: if m and n are relatively prime then a(m*n) = a(n) * a(m). For n >= 2, a(n)>=2 with equality iff n is prime. %H A061034 Eric M. Schmidt, <a href="/A061034/b061034.txt">Table of n, a(n) for n = 1..10000</a> %H A061034 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI scripts for various problems</a> %H A061034 G. A. Miller, On the Subgroups of an Abelian Group, The Annals of Mathematics, 2nd Ser., Vol. 6, No. 1. (1904), pp. 1-6. doi:<a href="http://dx.doi.org/10.2307/2007151">10.2307/2007151</a> [See paragraph 4 entitled "Total number of subgroups in a group of order p^m". - M. F. Hasler, Dec 03 2007] %H A061034 G. A. Miller, <a href="http://dx.doi.org/10.1090/S0002-9904-1927-04354-3">Determination of the number of subgroups of an abelian group</a>, Bull. Amer. Math. Soc. 33 (1927), 192-194. %F A061034 (C_2)^m has A006116(m) subgroups, so this is a lower bound if n is a power of 2 (e.g. a(16) >= 67). - _N. J. A. Sloane_, Dec 01 2007 %e A061034 a(16) = 67: C16 has 5 subgroups, C2 X C8 has 11 subgroups, (C2)^2 X C4 has 27 subgroups, (C2)^4 has 67 subgroups, (C4)^2 has 15 subgroups. %o A061034 (PARI) { A061034(n) = my(f=factorint(n)); prod(i=1,#f~, vecmax( apply( x->numsubgrp(f[i,1],x), partitions(f[i,2]) ) ) ); } \\ See Alekseyev link for numsubgrp(), _Max Alekseyev_, 2008 %Y A061034 Cf. A006116, A018216, A083573. %K A061034 nonn,mult %O A061034 1,2 %A A061034 Ola Veshta (olaveshta(AT)my-deja.com), May 26 2001 %E A061034 More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Jun 13 2003