This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061051 #32 Mar 27 2020 02:11:37 %S A061051 0,225,40401,2042041,317231721,16198161984,3921203921209, %T A061051 400000040000001,23391004233910041,1100298301100298304, %U A061051 141162631214116263129,1322314049613223140496,3171326702963171326702969,107786983188610778698318864,29726516052320297265160523209,1003781781031081003781781031081 %N A061051 Smallest square of the form [n digits][same n digits][further digits]. %C A061051 a(n) <= (2*10^n+1)^2. This bound is tight for n = 2, 7. Are there other values of n for which this bound is tight? For n = 11, there are no [further digits] block, i.e. the smallest square has 2n digits. This is true for all n in A086982. For instance, a(21) = 183673469387755102041183673469387755102041, a(33) = 132231404958677685950413223140496132231404958677685950413223140496. - _Chai Wah Wu_, Mar 25 2020 %H A061051 Chai Wah Wu, <a href="/A061051/b061051.txt">Table of n, a(n) for n = 0..37</a> %e A061051 40401 is the first square to have the first two digits the same as the next two digits %o A061051 (Python) %o A061051 from sympy import integer_nthroot %o A061051 def A061051(n): %o A061051 if n == 0: %o A061051 return 0 %o A061051 nstart = 10**(n-1) %o A061051 nend = 10*nstart %o A061051 for i in range(nstart,nend): %o A061051 k = int(str(i)*2) %o A061051 if integer_nthroot(k,2)[1]: %o A061051 return k %o A061051 for i in range(nstart,nend): %o A061051 si = str(i)*2 %o A061051 for sj in '014569': %o A061051 k = int(si+sj) %o A061051 if integer_nthroot(k,2)[1]: %o A061051 return k # _Chai Wah Wu_, Mar 25 2020 %Y A061051 Cf. A086982. %K A061051 base,nonn %O A061051 0,2 %A A061051 _Erich Friedman_, May 26 2001 %E A061051 One more term from _Vladeta Jovovic_, Jun 02 2001 %E A061051 a(7)-a(15) from _Chai Wah Wu_, Mar 25 2020