cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061070 Number of distinct values in the list of values of the Euler totient function {phi(j) : j=1..n}.

This page as a plain text file.
%I A061070 #13 Sep 10 2023 00:42:39
%S A061070 1,1,2,2,3,3,4,4,4,4,5,5,6,6,7,7,8,8,9,9,9,9,10,10,11,11,11,11,12,12,
%T A061070 13,13,13,13,14,14,15,15,15,15,16,16,17,17,17,17,18,18,18,18,19,19,20,
%U A061070 20,20,20,20,20,21,21,22,22,22,22,23,23,24,24,25,25,26,26,27,27,27,27
%N A061070 Number of distinct values in the list of values of the Euler totient function {phi(j) : j=1..n}.
%H A061070 T. D. Noe, <a href="/A061070/b061070.txt">Table of n, a(n) for n=1..1000</a>
%H A061070 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023.
%F A061070 a(n) = | {phi(j) : j=1..n} |.
%e A061070 From _Michael De Vlieger_, Sep 09 2023: (Start)
%e A061070 a(1) = 1 since phi(1) = 1 is distinct from phi(k), k < 1.
%e A061070 a(2) = 1 since phi(2) = phi(1).
%e A061070 a(3) = 2 since phi(3) = 2, distinct from phi(1) = phi(2) = 1.
%e A061070 a(4) = 2 since phi(4) = phi(3) = 2.
%e A061070 a(5) = 3 since phi(5) = 4, distinct from phi(k), k < 5, etc. (End)
%t A061070 nn = 120; c[_] := False; k = 0; Reap[Do[If[! c[#], k++; c[#] = True] &[EulerPhi[i]]; Sow[k], {i, nn}]][[-1, 1]] (* _Michael De Vlieger_, Sep 09 2023 *)
%o A061070 (Python)
%o A061070 from sympy import totient
%o A061070 def A061070(n): return len({totient(i) for i in range(1,n+1)}) # _Chai Wah Wu_, Sep 08 2023
%Y A061070 Cf. A000010.
%K A061070 nonn
%O A061070 1,3
%A A061070 _Labos Elemer_, May 28 2001