This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061071 #16 Sep 08 2023 17:31:38 %S A061071 1,2,2,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7, %T A061071 7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,11,11, %U A061071 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11 %N A061071 Number of distinct values in the list of number of divisors, d(j), j=1...n. %D A061071 B. Spearman and K. S. Williams, Handbook of Estimates in the Theory of Numbers, Carleton Math. Lecture Note Series No. 14, 1975; see p. 2.2. %H A061071 T. D. Noe, <a href="/A061071/b061071.txt">Table of n, a(n) for n = 1..10000</a> %H A061071 P. Erdős and L. Mirsky, <a href="http://www.renyi.hu/~p_erdos/1952-12.pdf">The distribution of values of the divisor function d(n)</a>, Proc. London Math. Soc. 2 (1952), pp. 257-271. %F A061071 Erdős & Mirsky show that log a(n) ~ k sqrt(log x)/log log x where k = Pi sqrt(8/3). - _Charles R Greathouse IV_, Dec 07 2012 %t A061071 a[n_] = Length[Union[Table[DivisorSigma[0, w], {w, 1, n}]]] %o A061071 (PARI) v=[];vector(100,n,t=numdiv(n);v=vecsort(concat(v,t),,8);#v) \\ _Charles R Greathouse IV_, Dec 12 2012 %o A061071 (Python) %o A061071 from sympy import divisor_count %o A061071 def A061071(n): return len({divisor_count(i) for i in range(1,n+1)}) # _Chai Wah Wu_, Sep 08 2023 %Y A061071 Cf. A000005. %K A061071 nonn %O A061071 1,2 %A A061071 _Labos Elemer_, May 28 2001