cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061077 a(n) is the sum of the products of the digits of the first n odd numbers.

This page as a plain text file.
%I A061077 #50 Mar 21 2022 11:48:27
%S A061077 1,4,9,16,25,26,29,34,41,50,52,58,68,82,100,103,112,127,148,175,179,
%T A061077 191,211,239,275,280,295,320,355,400,406,424,454,496,550,557,578,613,
%U A061077 662,725,733,757,797,853,925,934,961,1006,1069,1150,1150,1150,1150
%N A061077 a(n) is the sum of the products of the digits of the first n odd numbers.
%D A061077 Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
%H A061077 Luca Onnis, <a href="https://arxiv.org/abs/2203.07227">On the general Smarandache's sigma product of digits</a>, arXiv:2203.07227 [math.GM], 2022.
%F A061077 a(n) = Sum_{k = 1..n} (product of the digits of 2k-1).
%F A061077 From _Luca Onnis_, Mar 20 2022: (Start)
%F A061077 a(5*10^n) = (25/44)*(45^(n+1)-1).
%F A061077 a(n) <= (25/44)*(45^(log(n/5)+1)-1) for all n.
%F A061077 a(n) ~ (5/4)*A061078(n) as n -> infinity. (End)
%e A061077 a(7) = 1 + 3 + 5 + 7 + 9 + 1*1 + 1*3 = 29.
%t A061077 Accumulate[Times @@@ IntegerDigits[Range[1, 99, 2]]] (* _Luca Onnis_, Mar 20 2022 *)
%o A061077 (PARI) pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]);
%o A061077 a(n) = sum(k=1, n, pd(2*k-1)); \\ _Michel Marcus_, Feb 01 2015
%o A061077 (PARI) a(n) = {m=digits(2*n - 1); p=1; d=#m; for(i=1, #m, if(m[i]==0, d=i-1; break));
%o A061077 (25/44) * (45^(#m-1)-1) + sum(i=1, #m-1, (prod(j=1,#m-i-1,m[j])) * (m[#m-i]) * (m[#m-i]-1) * (5^(i + 1) * 9^(i-1)) / 2)+prod(k=1,#m-1,m[k])*(((m[#m]+1)^2)/4)} \\ _Luca Onnis_, Mar 20 2022
%o A061077 (Python)
%o A061077 from math import prod
%o A061077 def A061077(n): return sum(prod(int(d) for d in str(2*i+1)) for i in range(n)) # _Chai Wah Wu_, Mar 21 2022
%Y A061077 Cf. A061076, A061078.
%K A061077 nonn,base,easy
%O A061077 1,2
%A A061077 _Amarnath Murthy_, Apr 14 2001
%E A061077 More terms from _Matthew Conroy_, Apr 16 2001
%E A061077 Offset corrected by _Charles R Greathouse IV_, Feb 01 2015
%E A061077 Incorrect formula removed by _Luca Onnis_, Mar 20 2022