This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061079 #32 Feb 16 2025 08:32:44 %S A061079 1,18,600,35280,3265920,439084800,80951270400,19615115520000, %T A061079 6046686277632000,2311256907767808000,1072909785605898240000, %U A061079 594596384994354462720000,387780251083274649600000000,293999475161295508340736000000,256411097818451356681764864000000 %N A061079 Denominators in the series for sin integral Si(x). %C A061079 Si(x) = Integral_{t=0..x} sin(t)/t dt. %D A061079 Bronstein-Semendjajew, Taschenbuch der Mathematik, 13th ed. 1974, ch. 4.3.7, integral 283 of 515. %D A061079 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 38, equation 38:6:1 at page 364. %H A061079 Vincenzo Librandi, <a href="/A061079/b061079.txt">Table of n, a(n) for n = 1..200</a> %H A061079 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>. %H A061079 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Shi.html">Shi</a>. %F A061079 a(n) = (2n-1)*(2n-1)!. %F A061079 From _Sergei N. Gladkovskii_, Nov 29 2011: (Start) %F A061079 E.g.f.: A(x) = Si(x) = x + x^3/(W(0) - x^2); %F A061079 W(k) = x^2*(2*k+1) - (2*k+2)*(2*k+3)^2 + 2*x^2*(k+1)*(2*k+3)^3/W(k+1); (continued fraction). %F A061079 E.g.f.: A(x) = Si(x) = x - x^3/18 + x^5/(12*W(0) + 18*(x^2) + 324); %F A061079 W(k) = 16*k^3 + 68*k^2 + 84*k + 23 - x^2*(2*k+1)*(2*k+3)/(2+(2*k+4)*(2*k+5)^3/W(k+1)); (continued fraction). %F A061079 E.g.f.: A(x) = Si(x) = x*W(0); %F A061079 W(k) = 1 - x^2*(4*k+1)/((4*k+2)*(4*k+3)^2 - x^2*(4*k+2)*(4*k+3)^3/((4*k+3)*x^2 - (4*k+4)*(4*k+5)^2/W(k+1))); (continued fraction). (End) %e A061079 Si(x) = x/1 - x^3/18 + x^5/600 - x^7/35280 + x^9/3265920 -+ ... %t A061079 Table[(2n-1)*(2n-1)!,{n,1,20}] (* _Vincenzo Librandi_, Dec 01 2011 *) %o A061079 (Magma) [(2*n-1)*Factorial(2*n-1): n in [1..20]]; // _Vincenzo Librandi_, Dec 01 2011 %K A061079 easy,nonn %O A061079 1,2 %A A061079 _Frank Ellermann_, May 29 2001