This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A061109 #18 Aug 15 2025 23:18:15 %S A061109 1,6,6375,34623551127976881, %T A061109 18860302374385155610185422853070042488899966126368559233360607121925651097253827765970857 %N A061109 a(1) = 1; a(n) = smallest number such that the concatenation a(1)a(2)...a(n) is an n-th power. %C A061109 Is this sequence infinite? - _Charles R Greathouse IV_, Sep 19 2012 %C A061109 From _Robert Israel_, Oct 05 2020: (Start) %C A061109 If 10^m > ((x+1)^(1/n)-(x+1/10)^(1/n))^(-n), where x is the concatenation a(1)...a(n-1), then a(n) < 10^m. %C A061109 In particular, the sequence is infinite. %C A061109 a(6) has 558 digits, a(7) has 4014 digits, and a(8) has 32783 digits. (End) %D A061109 Amarnath Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11, No. 1-2-3, Spring 2000. %e A061109 a(1) = 1, a(1)a(2) = 16 = 4^2, a(1)a(2)a(3) = 166375 = 55^3, a(1)a(2)a(3)a(4) = 16637534623551127976881 = 359147^4. %p A061109 ncat:= (a,b) -> a*10^(1+ilog10(b))+b: %p A061109 f:= proc(n,x) %p A061109 local z,d; %p A061109 for d from 1 do %p A061109 z:= ceil(((x+1/10)*10^d)^(1/n)); %p A061109 if z^n < (x+1)*10^d then return z^n - x*10^d fi %p A061109 od %p A061109 end proc: %p A061109 R[1]:= 1: C:= 1: %p A061109 for n from 2 to 6 do %p A061109 R[n]:= f(n,C); %p A061109 C:= ncat(C, R[n]); %p A061109 od: %p A061109 seq(R[i],i=1..6); # _Robert Israel_, Oct 05 2020 %K A061109 base,nonn %O A061109 1,2 %A A061109 _Amarnath Murthy_, Apr 20 2001 %E A061109 Corrected and extended by Ulrich Schimke, Feb 08 2002 %E A061109 Offset corrected by _Robert Israel_, Oct 05 2020